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Abstract

The Zoe virtual assistant developed by the Linux User Group from Carlos III University
is a project that aims to automate various tedious tasks of the association. Its
architecture is based on independent microservices (agents) that communicate through
a common server and can be implemented in almost any programming language thanks
to the plain text messaging protocol.

The aim of this project is to extend the Zoe platform in order to add migration
capabilities to the agents. That way, it would be possible to distribute the load among
different machines, making efficient use of the available hardware resources by means
of load balancing algorithms while maintaining the internal data across migrations.

The approach followed was to design a portable protocol to deal with file and data
migrations and implement it in a distributed architecture using basic functionalities
from the original project. Said architecture was devised as an addition to Zoe, at
software level, that does not require any modification to the original components and
uses SSH tunneling for inter-machine communication.

As a result, the system obtained is completely backward compatible and transparent,
given that all the process is controlled by the independent Scout agent. Furthermore,
the two load balancing algorithms implemented automatically migrate the agents
either trying to maintain a regular load among all the machines or to use specific
machines, which would allow to shut down unused machines. Moreover, the modular
code greatly simplifies the addition of new algorithms.

As a conclusion, the proposed solution offers a new set of tools for developers of the
Zoe project in the hopes of enriching the agent ecosystem. Finally, by releasing it as
free software, anyone can expand the capabilities of this work or apply it to other
fields, which could lead to new and interesting, projects.
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Resumen

El projecto de asistente virtual Zoe desarrollado por el Grupo de Usuarios de Linux
de la Universidad Carlos III de Madrid tiene como fin la automatización de diferentes
tareas de la asociación. Su arquitectura se basa en microservicios independientes
(agentes) que se comunican por medio de un servidor común y pueden implementarse
en casi cualquier lenguaje de programación gracias al protocol de mensajería basado
en texto plano.

El objetivo de este proyecto es extender Zoe para habilitar la migración de agentes. Así,
sería posible distribuir la carga entre diferentes máquinas, haciendo un uso eficiente del
hardware disponible mediante algoritmos de balanceo de carga, manteniendo además
los datos internos durante la migración.

Para ello se diseñó un protocolo que se encargara de la migración de archivos y datos
y se implementó en una arquitectura distribuida usando funcionalidades básicas del
proyecto original. Dicha arquitectura se ideó como un añadido a Zoe a nivel de
software que no requiere modificación de los componentes originales y utiliza túneles
SSH para la comunicación entre máquinas.

El sistema obtenido como resultado es completamente compatible con el original,
además de transparente, teniendo en cuenta que el proceso se controla por medio
del agente independiente Scout. Además, los dos algoritmos de balanceo de carga
implementados migran agentes automáticamente, ya sea para mantener una carga
regular entre máquinas o utilizar máquinas específicas, lo que permitiría apagar
aquellas en desuso. Aparte de esto, el código modular simplifica enormemente el
añadir nuevos algoritmos.

Como conclusión, la solución propuesta ofrece un nuevo conjunto de herramientas para
desarrolladores del proyecto Zoe con la esperanza de poder enriquecer el ecosistema
de agentes. Finalmente, al liberarlo como software libre, cualquiera puede expandir
este trabajo o aplicarlo a otros campos, lo cual podría llevar a proyectos interesantes.
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Chapter 1

Introduction

Free software projects offer an excellent base to build on top of and extend the work
of others with enhancements or additional features. Such is the case of the Zoe virtual
assistant, developed by the Linux User Group (GUL1) from Carlos III University,
which aims to automate tasks in several scopes such as administration, management
or student memberships.

Given the distributed nature of this assistant, which will be explained in the next
section of this document, and the fact that it is a real project currently in use, it
provides a very good opportunity to apply the knowledge obtained throughout the
years in the University.

This document includes an introduction to the state of the art of technologies related
to the topic, a description of the proposed solution and its related architecture as well
as additional details such as time/cost planning, regulations that apply in the case of
this work, evaluation of the solution and, finally, conclusions on the work performed.

In addition to that, administrators may find the installation and user manuals in the
appendices of this document.

1.1 Objectives

This section lists the objectives to achieve through the development of this work.
These are summarized in four main points:

1. Design of an architecture to support agent migration. Such architecture
1http://gul.es
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would be an extension to the Zoe project at application level in order to remain
completely backward compatible

2. Design of a portable and efficient communication protocol. This proto-
col would need to be independent of the programming language used and serve
as the foundation for migrating and communicating remote agents with the Zoe
server

3. Design of load balancing algorithms in order to achieve better man-
agement of the available hardware resources. By performing automatic
migrations based on decision algorithms it would be possible to, for instance,
determine the best location for an agent by taking into account its load

4. Implementation and evaluation in an heterogeneous architecture. It
would be necessary to ascertain the validity of the solution proposed and its
behaviour when communicating machines with different configurations (both
hardware and software)

2



Chapter 2

Background

This chapter introduces some key concepts required for understanding the problem to
solve and the state of the art of the technology related to this project. In addition,
an overview of the Zoe architecture is given, indicating how the system works and,
finally, the alternatives considered before designing the proposed solution.

2.1 State of the art

This section offers an insight on technologies that are related to the problem to solve,
directly or indirectly, and their impact on different aspects of society.

2.1.1 Virtual assistants

Apple launched the first PDA (Personal Digital Assistant) the Newton MessagePad
in 1993. In the year 2000, nearly 12 million PDA units were sold worldwide [1, p. 1].
Since then, and especially due to the growth of the mobile device market and advances
in technology, the original concept has evolved giving birth to the IPAs (Intelligent
Personal Assistant), also known more commonly as virtual assistants.

While the PDA devices were designed with businesses or other fields such as medicine
in mind, it is clear that current mobile devices supply most, if not all, of the features
they offered. Recent versions of the Operating Systems used in these mobile devices
(Android, iOS, Windows, etc.) usually bundle a virtual assistant software of their own
which offers customized services to the user of the device.

Even though there are many virtual assistants in the market, the three most well-

3



known are Google Now from Google, Siri from Apple and Cortana from Microsoft.
Each of them works in a different way and/or platform (for instance, Siri is only
available in iOS devices), although a general description for them would be that of an
application which uses inputs such as the user’s voice, vision (images), and contextual
information to provide assistance by answering questions in natural language, making
recommendations, and performing actions [2, p. 1].

Most of these actions and functionalities offered by the assistants are performed
through Internet services, with examples such as natural language recognition, data
fetching or interaction with other online services. This type of implementation is in
place in order to reduce the load in the device as much as possible, as these mobile
devices and wearable devices are constrained by their computational capabilities and,
most importantly, the battery of the device.

2.1.2 Bot platforms

Recently, another field that has gained importance is the one of communication robots,
or simply bots. These have existed for some time, for instance in customer service
offered by phone companies, but are now in the spotlight, in part due to platforms
such as Telegram1, which apart from being an instant messaging system also offers
free APIs (Application Programming Interface) to create bots that can communicate
through the instant messaging service.

This, however, is not the only example, as bots can be created for virtually any
communication platform, being notable examples IRC, Twitter, Facebook or any
chat software available. The approach required for each platform varies greatly
depending on its implementation details, although most share a common point: they
are implemented as Internet services.

As opposed to virtual assistants, which share some of the computational load with
remote servers, bots perform all the computations in the server they are installed
in, meaning that user devices are only required to transmit the input (text, voice,
images, etc.). Because the actions performed are usually not as load intensive as the
ones performed by a regular virtual assistant, even though they can do things such
as natural language recognition if the developer chooses to do so, it is an interesting
solution for implementing small services.

There are, however, privacy implications when using this type of services, as the bots
1https://core.telegram.org/bots
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are hosted in the private server of an individual rather than a company such as Google
or Apple, therefore the user has to consider whether the information the bot will have
access to is worth the services it offers.

2.1.3 Cloud computing

The previously mentioned Internet service trend is also considered part of
cloud/distributed computing, which refers to both the applications delivered as services
over the Internet and the hardware and systems software in the data centers that
provide those services, being also referred to as SaaS (Software as a Service) [3].

For users this simply implies the execution of remote procedures or actions by means of
a communication interface such as the well-established RPC protocol, web applications
or REST APIs, which are very common nowadays. However, service providers,
developers or administrators must consider additional elements to this approach:
any application needs a model of computation, a model of storage, and a model of
communication [3, p. 2].

It is clear that software services require hardware to run on top of, and while a small
application may be able to run seamlessly on a small machine, such as a Raspberry
Pi, a popular and widely used service, like those offered by Amazon or Google, would
require higher computation capabilities and resources that can only be achieved
through powerful datacenters. In spite of that, there is a limit to what technology can
achieve with the resources initially allocated for a service as it may end up requiring
additional means to continue operation.

This issue is present in data storage as well. Hard disk drives have evolved greatly
since the first implementations, recently reaching the first drive with a maximum
capacity of 10 Terabytes [4], but these may fail over time and require a replacement.
As it is not feasible to stop a datacenter for this reason, scenarios such as the previous
one have to be considered when implementing the system: it should be possible to
expand or replace resources as needed without affecting the deployed service(s).

There is an additional approach, that can also be applied in parallel, available for
cases such as these: decentralized systems. This would consist in sharing load, data,
etc. among several datacenters or simple servers in order to increase availability or
performance. An example of this can be found in Cassandra, a distributed storage
system for managing very large amounts of structured data spread out across many
commodity servers [5, p. 1] originally created at Facebook.
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Decentralized systems use the network to communicate as well as to provide services.
The advantage of the approaches mentioned is that systems may be stopped or
launched on demand to save resources.

2.1.4 Microservices

Directly related to cloud computing is the microservice architecture pattern, which
defines a microservice as a small application which can be deployed independently,
scaled independently, and tested independently and that has a single responsibility
[6, p. 1]. These services may, or may not, communicate among themselves using a
common channel which ranges from standard HTTP protocols to a messaging bus.

In addition to being independent, each service may be created using different technology
stacks or programming languages. As more and more languages are focusing on web
technologies, developers can greatly benefit from this fact and choose the best option
to implement a microservice on a by-case basis.

All in all, this pattern is no panacea and whether to use it or not should be carefully
considered beforehand. Whereas monolithic applications may be deployed to a small
server or container, having several microservices implies a higher cost in terms of
resources. The added complexity of a distributed system is apparent when dealing
with asynchronous operations or tasks of each service, especially when a synchronous
element is introduced (e.g., storing information in a database).

2.1.5 Secure network communications

Taking into account the aforementioned and given that the network plays a very
important role, security of the communications is of primary importance. The way of
securing the communication greatly depends on how the system works.

For example, regular web pages and applications (including REST APIs) employ
standard security protocols such as SSL. This protocol was created by Netscape to
ensure secure transactions between web servers and browsers, and uses a third party
Certificate Authority (CA) to identify one end or both ends of the transactions [7, p.
2].

The usage of such certificates prevents Man in the Middle attacks and ensure secure
communications with the server if correctly implemented. However, users could not
always afford said certificates as their price range varies greatly depending on the
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features offered with the certificate (e.g., valid for all subdomains, authentication of
the owner, etc.), resulting in personal webs and applications not implementing the
secure HTTPS protocol.

Nowadays this is starting to change with the Let’s Encrypt project started by the
University of Michigan, Mozilla, the electronic Frontier Foundation and other partners
and which will enable websites and other computerized systems to get free, secure,
self-renewing SSL certificates that will be trusted by browsers as the project will have
its own CA [8, p. 5].

Another scenario would be that of secure communication among private systems that,
as opposed to web services or applications, do not actually offer access to external
users. One of the most, if not the most, well-known protocol is the SSH (Secure Shell)
protocol, which enables secure remote login and other secure network services over an
insecure network [9, p. 2].

This protocol is based on the idea of establishing a secure communication channel on
top of an insecure one where the host machine has its own private-public keys and
performs authentication for a remote user. Apart from being an open standard protocol,
it emphasizes points such as all encryption, integrity, and public key algorithms used
being well-known, well-established algorithms [9, p. 6], making it easier to audit and
more secure than proprietary protocols as anyone may participate in its development.

The way it is mostly used is through public key authentication, which creates the
secure channel using public information from both the host and the user (or other
host) and encryption algorithms with their respective private keys, supposing that
neither have been compromised in any way.

While these are only a couple of examples of secure communications applied to system
communication, closely related to the work presented in this document, there are
multiple protocols that can be applied in other fields such as OpenPGP in email
encryption.

2.2 Zoe architecture

The Zoe virtual assistant project is a free software (from here on, free software) project
developed by the Linux User Group from UC3M with the objective of automating
tasks. Overall, it implements a microservice architecture pattern where the services
are named agents and can be implemented in virtually any programming language.
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This allows for developers to easily develop new features in the language they feel
most comfortable with.

These agents communicate using a common protocol, which is also independent from
the programming language, through an internal server and work in an asynchronous
manner performing very specific tasks.

The following sections offer a brief introduction to key concepts of this architecture.

2.2.1 Agents

Also called actors, agents are the services that perform all the operations. Usually,
agents are not aware of the rest of the agents installed in the system and rely on the
server for communication and handling of messages directed to them.

In general terms, an agent is a small server that awaits connections to the socket
it is listening to and performs specific actions depending on the message received.
Therefore the only method that is running continuously until the agent is stopped
is the one that listens for such connections and receives the messages. An overview
of such connections can be found in Figure 2.1, which shows four different agents
connected to the server and not among themselves.

Figure 2.1: Example of agents connected to server

Once a message is received, its structure is parsed following the specification shown in
the next section and an action/method is executed according to the parsed message.
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While similar to how RPC works, this architecture does not necessarily reply once the
requested method has been executed, being completely decoupled from the client that
originally sent the request.

As this is an asynchronous system, the main thread in charge of receiving messages
from the server should never perform the parsed actions itself. Instead, agents rely on
either threads or additional processes to do so. The main advantage of this approach,
apart from the fact that the main thread is not blocked by long-running operations,
is that each child thread is isolated from the rest, even though the developer may
choose to synchronize them at some point (e.g., shared memory access), hence being
unaffected by errors in sibling threads.

Even though agents are intended to work in an asynchronous manner, it is also possible
to run synchronous tasks. The principle is the same as before: when started, the main
thread of the agent inspects the methods implemented and if a timed method is found,
it creates a new child thread that will be in charge of running that method periodically,
for instance checking mail inbox or machine status. However, and given that this is
not a real time system, these synchronous tasks are executed on a best-effort basis
and their scheduling time is not guaranteed.

At the time of writing this document, most of the agents are written in Python,
although there are a couple written in Java, and there is a Zoe library available for
both languages included in the Zoe startup kit distribution.

2.2.2 Communication

The communication protocol used by the Zoe server and its agents is intended to be
simple to parse and implement. It is an indirect application of the Unix philosophy,
which strongly encourages writing programs that read and write simple, textual,
stream-oriented, device-independent formats [10, p. 15], and as such it is plain text
with a specific structure.

On one hand, by using plain text agents (and server) can be written in any programming
language taking into account that all of them have code in their respective standard
libraries to deal with strings in some form or another. On the other hand, this imposes
some limits as to what can be sent in said messages. Simple data can usually be
converted to a string representation, but complex data structures are much more
difficult to deal with, especially in inter-language communication.

Nonetheless, this communication protocol is very light and works incredibly well in
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this architecture. It is based around the idea of using key-value pairs to identify parts
of the message, for instance (omit the newlines):

dst=zam
&tag=install
&name=archivist
&source=rmed/zoe-archivist
&sender=admin
&src=tg

Almost all agents recognize the following keys:

• dst: agent this message is intended for, in this case the Zoe Agent Manager (an
agent named zam)

• tag: action the agent should execute, in this case install an agent from a git
repository

The dst key is also used by the server to determine the address it should relay the
message to, while the tag key is the standard way of identifying available methods in
the agent. Tags are then checked by the agent, as specified before, when a message is
received to determine the method to execute.

In addition, the previous message contains information which is only of interest to the
agent that receives the message (zam):

• name: name of the agent to install
• source: GitHub repository from which to download the source
• sender: unique ID of the user that sent the message, usually from a communica-

tion channel such as a chat or an email
• src: name of the agent the message comes from, in this case Telegram, used to

send feedback messages after operation

Although easy to read, these messages are tedious for humans to write. That is why
Zoe implements communication channels that employ natural language recognition
to extract the aforementioned information. Figure 2.2 shows the execution and
communication flow (messages exchanged) when the previous message is received.

First, the user sends a natural language command (Install “archivist” from “rmed/zoe-
archivist”) through a communication channel, for instance Telegram. This message is
received by the agent in charge of that communication channel (agent tgbot), which
extracts relevant information such as the message itself, the channel where the message
came from and the sender of the message.
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Given that communication channel agents do not know how to interpret natural
language commands, they relay the extracted information to the natural agent, who
parses the language using several scripts. These scripts extract information for the
recipient agent (in this case: name and source repository) and relay the message.

Finally, the destination agent (zam) performs the action and may also return feedback
to the user through the communication channel they first used (i.e., “Agent archivist
installed correctly”).

As shown, the server is only in charge of dispatching messages to agents, being unaware
of their contents.

There is another type of messages that deals with topics. Topics can be used to send
the same message to several agents that work with a specific topic. Relation between
agents and topics is stored in one of the configuration files in the Zoe distribution.
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Figure 2.2: Command: installation of agent archivist
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2.2.3 Server

The official Zoe server is written in the Scala programming language and requires the
Java Virtual Machine to run. It has two main functionalities:

• Proxy: communicates with other Zoe instances (if configured) and parses
messages sent to its socket (by default in port 30000)

• Router: routes the messages that each agent sends and delivers them accordingly

Figure 2.3: Distributed Zoe instances

This implies that Zoe can work in a distributed manner, both in terms of having
agents in different machines and communicating with other instances (e.g., another
instance has an agent that is not available in the local one), as represented in Figure
2.3. Both Zoe instances are configured to be aware of each other, usually indicating
host and port of the other server, and are able to exchange messages when needed
(e.g., one Zoe instance has an agent that the other needs).

However, as shown previously, the communication protocol does not implement any
kind of encryption and sends the messages as plain text, so this type of distributed
functionality must be secured through external means by an administrator.

In order to perform message routing, the server needs to know the ports (and addresses)
in which each of the agents can be found. This information is stored in an internal
map that is filled on startup with information from the agents configuration file. In
addition, and given that agents may be added and removed dynamically from the
server at any time, there is special message for the server that updates the internal
map with the keys it contains. Its structure is as follows:

dst=server&tag=register&name=<AGENT_NAME>&host=<AGENT_HOST>&port=<AGENT_PORT>

13



2.3 Considered alternatives

This section exposes the different alternatives initially considered for this work, before
reaching the final solution, with the main reasons for discarding them.

2.3.1 Virtualization

Virtualization consists on running an operating system on top of another operating
system by means of an hypervisor. The hypervisor acts as a layer between the
virtualized guest operating system and the real hardware [11], making the virtualized
operating system (guest) see the real hardware as its own.

While there are several hypervisor solutions (Xen, VMWare, OpenVZ, etc.), the one
that was mainly considered was KVM (Kernel-based Virtual Machine) due to the fact
that the Linux kernel includes support for full KVM virtualization since version 2.6.20
(being 4.5.3 the latest stable version at the time of writing). With this, the Linux
kernel is treated as the hypervisor so that the virtualized environment can benefit
from all the ongoing work on the Linux kernel itself [11]. Figure 2.4 shows an overview
of how KVM is implemented on top of the Linux kernel.

Figure 2.4: KVM Architecture. Adapted from an original figure Copyright of Red Hat, Inc. [12]

The main reason for using this type of virtualization would be live migration, which
was one of the primary objectives of this work. This process works by copying guest
memory to the target host in parallel with normal guest execution. If a guest page
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has been modified after it has been copied, it must be copied again [13, p. 229]. In
the scope of the task at hand it would mean moving agents accross machines without
interruption of the services they provide.

Although the aforementioned is a very important advantage, this solution showed
several disadvantages that made it unfit for implementation. First and foremost,
virtualization using KVM requires hardware support, reducing the number of platforms
that the project could be executed on (Intel and AMD do support virtualization in
most of their products).

Secondly, there is an important overhead to consider when dealing with virtual
machines. It would be a practical implementation for conventional servers given that
they often require a set of tools that run on top of an operating system but, in the case
of a Zoe agent, the advantage of having easy live migrations is not worth the overhead
and additional complexity of the system (e.g., each agent would run independently on
an isolated virtual machine with its own operating system and requiring a complete
modification of the Zoe architecture).

2.3.2 Containers

Containers, follow a similar approach to virtualization: execute multiple isolated
applications in a single host machine. LXC (Linux Containers) is an operating system
level virtualization technology that creates a completely sandboxed virtual environment
in Linux without the overhead of a full-fledged virtual machine [14, p. 2].

Part of the recent popularity of such technology is due to the open source Docker
framework, which provides a tool that greatly simplifies the interaction with LXC
and other kernel functionalities, as well as the more efficient use of available resources.
This means a computer running Docker can run many more simultaneous virtual
instances than the same computer running typical virtual machines [15].

In addition, Docker focuses on application development and deployment, with features
such as container versioning, allowing to rollback to a previous state, and easy
deployment through a configuration file (Dockerfile). This Dockerfile contains the
commands necessary to build a container and range from specifying a base image
(such as Debian) to installing software and launching a web server.

Figure 2.5 shows an overview of the Docker architecture. In this architecture, there
is only one Operating System (the host system) which is shared among the
containers, as opposed to the case of virtualization, in which all virtual machines have
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Figure 2.5: Docker Architecture. Adapted from an original figure Copyright of Docker, Inc. [16]

their own Operating System. This is one of the main reasons for the efficient use of
resources discussed previously.

It is clear that containers offer many advantages over classic virtualization, although
there are limitations as well: it is not possible to run containers with different processor
architecture (i.e., ARM architecture cannot run applications packaged for x86).

The reasons for not using Docker containers for this work were similar to those from
the previous virtualization section: even though it is also possible to perform live
migration of containers and the overhead would not be as noticeable as the one
from virtualization, only one processor architecture (the central server one) would be
supported and the Zoe architecture would need modifications (albeit minimal when
compared to virtualization).

2.3.3 Network Filesystem

The final alternative that was initially considered was using NFS (Network Filesystem)
for sharing files across the central server and the outpost machines. NFS consists of
three major pieces: the protocol, the server side and the client side [17, p. 119] and
was originally developed by Sun Microsystems in 1984.

At its core, the remote filesystem is implemented using RPC (which was also developed
by Sun Microsystems) in a stateless fashion in order to simplify the protocol and error
recovery: when a server crashes, the client re-sends NFS requests until a response is
received, and the server does no crash recovery at all [17, p. 120].
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Figure 2.6 shows an overview of the architecture of NFS. As stated before, all operations
on the server are performed through RPC protocol. The server routines rely on kernel
system calls to affect the files of the filesystem, although such operations are transparent
to the client.

Figure 2.6: NFS architecture. Adapted from [17, p. 122]

Even though it was developed for Unix systems, nowadays it can be implemented
in all major operating systems, including GNU/Linux based ones. In fact, it is very
common to see such filesystem implemented in remote multi-user scenarios that enable
user access from different machines, for instance in organizations or universities.

Given that it works in a transparent way for both users and applications, Zoe agent
files would have been shared using a NFS (from the central server) and accessed
directly by the outposts. By doing so, load balancing would consist on stopping the
process of an agent in the machine it is running on and have another machine start
the program, effectively using its own available resources for the computations.

Taking into account that most of the agents are written in interpreted languages (i.e.,
Python, Java), there would not have been an issue in architecture compatibility given
that each machine would possess the necessary tools for the execution. However,
connection to the Zoe server would have needed a separate implementation (ideally
taking security into account).

Nonetheless, this option was also discarded for two main reasons. First, no state
would have been saved during the downtime of the agent when migrated, losing any
information the agent could have been working with up to that point. Second, the
performance and complexity implications of using this protocol were a great concern:
NFS, being based on RCP, relies on network stability for accessing the files and is
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much slower when compared to native access to the disk. In addition, configuring
NFS could be a difficult task for users that do not have a high level of expertise in
the field.

All in all, this NFS based approach proved to be most interesting and might be a
compelling topic to study for its application in scenarios such as scientific computation
that does not rely heavily on disk access.
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Chapter 3

Proposed solution

The outpost system is a distributed system architecture that tries to solve the problem
at hand employing free and open source technologies and software in its entirety. As
a free software project itself, the system specification, which can be found in the next
pages of this document, will also be published in the future in the hopes of providing
a useful service to developers of the Zoe platform.

In addition to the architecture of the system, this section describes the development
environment and relevant tools used for the design and implementation of the system,
as well as the load balancing capabilities included within it.

3.1 Development environment and tools

The following tools and environment were used to develop the solution. Note that all
of them are free software, which also helps reduce project costs.

3.1.1 Debian GNU/Linux

The operating system used to provide a base for the development environment was the
Debian GNU/Linux distribution in its testing branch (at the time of writing, version
9.0 “stretch”). This operating system provides a solid foundation for both advanced
and regular desktop users, with tools of many different fields available.

Apart from being free/libre software, it can be downloaded freely from the webpage of
the project (https://www.debian.org).
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3.1.2 Time planning

The gantt chart used for time planning (see Planning) was created using the GanttPro-
ject tool.

3.1.3 Code editor and file management

All the code was developed using the Vim editor, mainly due to past experience with
the software, its extensibility and the fact that it integrates perfectly with the workflow
employed throughout the development of the project (heavy terminal usage).

Every component of the project (Scout, outpost, library, etc.) was put under its
own git repository for a more efficient version control management, allowing to safely
change the code of individual components without affecting the rest and revert those
changes if needed.

3.1.4 Programming language

As most of the Zoe agents are developed using the Python programming language,
with a standard Zoe library available, and given the experience that has been gained
through development of personal projects in the past years, it was chosen as the main
development language.

Python is a dynamic programming language that can be executed in many different
platforms and operating systems, offering portability of the code with no additional
requirements as long as the target machine has a Python interpreter available. In
particular, the code was developed and tested in versions 3.4 and 3.5.

Furthermore, some additional modules and libraries, separate from the standard
Python library, were used to write the code. These are:

• Zoe libraries for Python developed by David Muñoz and released under the
MIT licence

• Paramiko: module that implements the SSHv2 protocol in Python. Devel-
oped/Maintained by Jeff Forcier (and contributors) and released under the
LGPLv2 licence [18]

• scp: plugin module for Paramiko which implements file copying capabilities
using the Paramiko connection. Developed/Maintained by James Bardin (and
contributors) and released under the LGPLv2 licence [19]
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• peewee: small ORM (Object-Relational Mapping) library used to manage the
internal databases. Developed/Maintained by Charles Leifer (and contributors)
and released under the MIT licence [20]

• Blinker: signaling module used in the dashboard implementation. Devel-
oped/Maintained by Jason Kirtland (and contributors) and released under the
MIT licence [21]

• PyGObject: Python bindings for the GTK+3 toolkit used for the dashboard
user interface. Developed/Maintained by the GNOME Foundation and released
under the LGPLv2 licence [22]

3.1.5 HPLinpack

As each machine has different hardware, the total capacity of each one needs to be
benchmarked beforehand. Although there are many benchmarks available, the one
used during development and testing was LINPACK. In particular, the HPL suite,
which is an implementation of the LINPACK benchmark, was compiled manually.

In essence, LINPACK is a collection of subroutines which analyze and solve various
systems of simultaneous linear algebraic equations [23]. These operations place a lot of
stress on the processor(s) and can be used to determine the capabilities of a machine
in various scenarios that can be configured through a complex configuration file.

3.1.6 Documentation

The documentation for this work was written as another piece of code, with Vim and
its own git repository, using the Markdown syntax (which is released under a BSD
licence) [24] and some LATEX for the source files. These source files are then compiled
to PDF using Pandoc, which is a free software (released under the GPLv2 licence)
that is able to convert documents to and from multiple formats [25].

This workflow has worked extremely well in all the reports delivered during the last
two academic years and has simplified the creation of documents greatly.

3.1.7 Diagrams

Attached diagrams were created with the GNOME Dia, which is a cross-platform
diagram creation program released under GPLv2 licence.
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3.2 Architecture

The implementation, referred to as outpost system from here on, consists of three main
blocks: a protocol, the outpost microserver that runs on a remote machine and an
agent named scout which runs in the central Zoe server. The details for each of them
are explained in this section.

Figure 3.1 shows a general overview of the architecture proposed, where the Zoe server
works with both normal and outpost agents, allowing them to exchange messages in
a transparent way, and communicates with other machines (outposts) by means of
SSH tunnels. Outpost agents employ a different standard library that implements the
protocol (see Protocol) necessary to enable agent migrations.

In addition, and as part of the information gathering process, both Scout agent and
outpost servers use the Linux perf tool in order to access hardware counter information
exposed by the Linux kernel.

Each of the points shown in the figure will be discussed and explained in the next
sections.
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3.2.1 Protocol

The outpost protocol was designed as a non-intrusive element that could be easily
attached to the main Zoe library by using common core functionalities available in
Zoe. The result is a fully compatible subprotocol that works entirely on the agent-side
and does not require any internal change to the server code.

As shown previously (see Agents section), Zoe agents are processes which receive and
send messages via socket connections. They can be easily executed in remote machines
that have to be connected to the central server. However, moving agents between
machines requires manual intervention from an user/administrator both for agent
installation and proper configuration.

In order to automate these tasks, the outpost protocol introduces a series of pro-
gramming language independent, and easy to implement, rules and functions that
achieve the desired result by using concepts available in most, if not all, programming
languages.

The migration process can be summarized in the following steps:

1. Agent is notified of migration
2. Data is serialized and stored
3. Agent is stopped
4. Agent files are copied to remote machine
5. Agent is launched in remote machine
6. Data is restored
7. Agent resumes operation

3.2.1.1 Data migration

The Java language offers RMI (Remote Method Invocation), which is similar to RPC in
the sense of distributed computing. RMI uses a variant of the Java Object Serialization
package to marshal and reconstruct objects [26], meaning that the object itself is
being sent through the network, hence keeping all its information.

Approaches such as this one cannot be directly ported to other programming languages,
but the concept it offers can be reused: keep as much information as possible between
migrations.

Most, if not all, programming languages are able to serialize information, extract
data structures from memory and store them, and deserialize it, restore the dumped
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information to memory. Through this mechanism, it is possible to obtain the bytes
that represent data that the agent is working with and store them until the migration
has been completed.

Zoe messages are formed by plain text, so sending bytes directly is not possible.
Therefore the data has to be encoded so that it can be represented as plain text.
This can be achieved by using the Base 64 encoding which is designed to represent
arbitrary sequences of octets in a form that allows the use of both upper and lowercase
letters but that needs not be human readable [27].

Mixing data serialization and Base 64 encoding (in Python through the pickle and
base64 modules), data can be transmitted and stored as plain text through the Zoe
messaging protocol, only needing a small change: the Base 64 alphabet defines the
character = for padding the end of the data. Due to the Zoe protocol using that symbol
in its key-value pairs, it is substituted with the character [, which is not used in
the Base 64 alphabet, when sent and changed back at the time of deserialization.

This data (de)serialization is triggered by special messages that use the tags travel!
when migrating and settle! when restoring information. An overview is shown in
Figure 3.2, which omits the agent Scout that is explained later on. In the figure, the
agent outpostest is notified of the migration, serializes its variables a and b and sends
them back for storage. In addition, when the agent is started, it asks for its stored
information and restores it.

In the Python implementation, this process is performed through four special methods
that are added to the agent code when initialized:

• __prepare__travel__(): serializes the information as stated before. The de-
veloper may specify variables to store by using an internal list (_scout_include
for inclusion and _scout_exclude for exclusion) or let use all known variables

• __settle__outpost__(message): with the message specified extract the serial-
ized information and set the variable values to the deserialized data. The lists
mentioned before are taken into account to see what is going to be restored

• __travel__(): in the base implementation, this method simply executes
__prepare__travel__(). Developers are expected to override this method
should they need additional operations when migrating

• __settle__(message): in the base implementation, this method simply executes
__settle__outpost__(message). Developers are expected to override this
method should they need additional operations when restoring the agent after a
migration
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Figure 3.2: Data serialization and restoration; (a) serialization message, (b) restoration message
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3.2.1.2 File migration

Another important factor in agent migration is copying files to the remote machine
that will continue with the execution of the agent. This is done through a SSH
connection, that is set up using public key authentication as to not store any type of
password, and the scp utility, which allows copying files and directories through an
established SSH connection.

In Python, connection is opened using the paramiko module and files copied using
its scp plugin. It should be noted that this process is performed by the special agent
Scout and hence does not need to be ported to other programming languages (e.g.,
the implementation is independent of other agents).

It is important to have a way of identifying the files that correspond to each agent in
both local and remote systems. These files include those necessary for execution (i.e.,
scripts or binaries) and configuration files accessed during operation, as long as they
are unique to the agent and not shared with any other agent/process. To that end,
two files are considered in the protocol:

• static: each line of this file references the path to a file or directory that never
changes its content (unless an user changes it explicitly), relative to the root
directory of Zoe (aka “ZOE_HOME”)

• dynamic: each line of this file references the path to a file or directory that may
change its content (e.g., a database), relative to the root directory of Zoe

Given that paths are relative to the root of Zoe or the outpost, they can be easily
identified in either case. Furthermore, separation of static and dynamic files increases
performance of the system: the central server keeps a backup copy of the static files
and these backup is copied to remote machines, but never from a remote machine
to the central server, requiring only the dynamic files in this case, therefore saving
bandwith and reducing the time needed to migrate.

An example of these files for the agent outpostest:

# static

agents/outpostest
etc/outpostest.conf

# dynamic
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etc/outpostest_dynamic.conf

3.2.1.3 Message relaying

When agents are notified of their migration, they are given a short period of time
(several seconds) to be able to complete any ongoing tasks before their process is
terminated. During this grace period, they should not be able to process any message
due to the imminent termination.

In order to make the downtime unnoticeable to the users, the protocol includes the
concept of message relaying: when notified of the migration, the agent will relay any
message addressed to it to the Scout agent without any modification. These messages
are stored as is in a database, with their destination clearly identified, and delivered
sequentially to the agent once migrated.

Taking into account that migrations usually do not take too much time to complete,
relaying messages and delivering them after migration helps prevent availability issues
without greatly affecting performance of the service.

Note that this process can be initiated manually at any time, but is supposed to
be executed automatically when data has been restored after a migration (see Data
migration).

3.2.1.4 Additional operations

Software that comprises the agents may have additional requirements, usually mod-
ules and/or libraries specific to the language. The convention for these additional
components is to place them in the path agents/AGENT_NAME/lib so that they do
not affect other agents, for instance with version mismatch.

These libraries can usually be installed without needing root/administrator access to
the system through an additional tool. In the case of Python, the most used tool for
this purpose is pip, which is able to download and install modules to the specified
directory from the official Python Package Index (PyPI).

The main problem with dealing with such libraries is that, sometimes, they may
require compilation of specific components, for instance C language bindings for some
low level functionality. Such binaries cannot be directly copied to a remote machine
that has a different architecture (e.g., x64 to arm64). Instead, the protocol allows the
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developer to specify additional commands or operations required when migrating an
agent through two special files, similar to the File migration scenario:

• premig: each line of this file is a command that is executed in a shell, either
locally or remotely depending on where the migration is performed, before the
files are copied

• postmig: each line of this file is a command that is executed in a shell, either
locally or remotely depending on where the migration is performed, after the
files are copied (directory structures have been created)

This implementation is based on the mechanics employed by the fumi project, which
is a simple tool for deploying remote applications [28] and uses a similar approach
in its deployment file specification. The following is an example obtained from the
postmig file of agent madtrans:

pip3 install -t ${ZOE_HOME}/agents/madtrans/lib requests

Note that the token ${ZOE_HOME} is replaced accordingly depending on the root of
the Zoe server or outpost. The previous line simply installs the requests module
for Python in the agents/madtrans/lib directory when the directory tree has been
created (after copying files from central).

3.2.1.5 Standard library

As mentioned previously, this protocol should work on top of an existing Zoe imple-
mentation without modifying internal components, such as the server. In order to
achieve this, it was devised as an addition to the standard Zoe library that implements
the relevant functionalities specified in the previous section as an importable module
for the agents.

The downside of this approach is that agent developers have to modify their agents
in order to use the outpost protocol. However, for the Python implementation, and
hopefully for future language implementations, this fact has been alleviated by offering
an interface that appears to be very simple.

Figure 3.3 shows two blocks of code: one for a regular Zoe agent (left block) and
the other for the same agent using the outpost interface (right block). The agent is
identified in the server as outpostest and recognizes three different actions/messages:

• add: adds 1 to the internal counter (a) and prints its new value to the log file
• string: prints the value of its internal string variable b to the log file
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import zoe
from zoe.deco import Agent, Message

@Agent(name="outpostest")
class Outpostest:

def __init__(self):
self.a = 0
self.b = 'test'

@Message(tags=['add'])
def add(self, parser):

self.a += 1
print(self.a)

@Message(tags=['string'])
def string(self, parser):

print(self.b)

@Message(tags=['echo'])
def echo(self, parser):

msg = parser.get('msg')
print('ECHO: ' + msg)

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import zoe
from zoe.outpost import OutpostAgent,\

Message

@OutpostAgent(name="outpostest")
class Outpostest:

def __init__(self):
self.a = 0
self.b = 'test'

self._scout_include = ['a', 'b']

@Message(tags=['add'])
def add(self, parser):

self.a += 1
print(self.a)

@Message(tags=['string'])
def string(self, parser):

print(self.b)

@Message(tags=['echo'])
def echo(self, parser):

msg = parser.get('msg')
print('ECHO: ' + msg)

Figure 3.3: left, regular Zoe agent; right, agent using outpost interface
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• echo: prints the received message (msg key) to the log file

The code is very simple, meaning that it can be easily converted to an outpost agent
by including the static and dynamic files (see File migration) and performing the
shown modifications in the code (right block). Through these simple modifications
the agent is now ready to work as part of the outpost schema:

from zoe.outpost import OutpostAgent, Message

The previous line indicates that, instead of importing the original Zoe library
(zoe.deco), it should use the outpost one, which in fact inherits all the functionalities
offered by the Zoe one (OutpostAgent instead of Agent).

@OutpostAgent(name="outpostest")

In a similar way to the import statement, the previous line simply replaces the original
Agent class with the new OutpostAgent class that implements the data migration
part of the protocol (see Data migration).

Lastly, the following additional line identifies internal variables that will be serialized
in case a migration occurs (see Data migration), which are the only two variables
present (a and b):

self._scout_include = ['a', 'b']

Considering that every possible complex scenario cannot be accounted for in the library
itself, developers have the possibility of creating their own additions to the migration
process by overriding the internal methods __travel__() and __settle__(message),
as shown in the Data migration section. By doing so, they would have complete
control over the behaviour of their agent in the migration process.

3.2.2 SSH tunneling

Considering that outposts are running on external/remote machines, a communication
channel is needed for message delivery. Outposts relay messages from and to the
agents (see Outpost) and should have a direct connection to the central server.

While this could be achieved by opening the port used by the outpost to the public
(e.g., allowing connections from anywhere on the Internet) and configuring firewall
rules to allow access from a specific IP address, the one where the central server
is located, this solution does not escalate very well with high number of machines
(higher number of IPs to add to the firewall) and usually requires intervention from
an administrator.
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Instead of relying on firewall for security, the outpost system employs SSH tunnels.
SSH tunneling is a method that creates a virtual tunnel over the network, with client
and server being the endpoints of the tunnel [29]. The main advantage of using
tunneling is that all traffic between the machines is encrypted using standard security
that does not modify the messaging protocol at all.

In the case of this implementation, the ends of the tunnel would be the central
Zoe server and the remote machine running the outpost. This implies that outpost
machines need to have a SSH server configured to be able to perform the connection
of the tunnel.

In the practice, all network traffic that enters one side of the tunnel in machine A can
be read through the other end of the pipe in machine B. As these ends are associated to
specific ports in both systems, it is possible to launch a server that awaits connections
from the corresponding port number. However, since attaching a server to a port
implies that only one-way communication (i.e., receiving data) is available for that
tunnel, the protocol expects two SSH tunnels for each outpost machine:

• Tunnel 1 is attached to the outpost server in the remote machine and to a
previously configured port number in the central machine

• Tunnel 2 is attached to the Zoe server in the central machine and to a previously
configured port number in the outpost machine

Moreover, by using the localhost domain, this integration can be extended to any
number of machines while server and agents have the impression of being in the same
machine.

These connections are managed by the Scout agent and use the command autossh
instead of the regular ssh (both available in most GNU/Linux software repositories).
This utility launches an instance of ssh for the connection, but is also able to monitor
and reinitialize it when necessary, meaning that tunnels will only close when manually
closed or there have been network issues.

Figure 3.4 shows how this architecture works: the Zoe server is listening on port 30000
of the central server (marked as receiving end of tunnel 2 ), the outpost is listening on
port 30000 of the remote machine (marked as receiving end of tunnel 1 ) and port
number 29999 is used in both machines as the end that forwards data to the other
machine.
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Figure 3.4: SSH tunneling architecture

3.2.3 Outpost

The outpost serves as a gateway between migrated agents and the central server. It
is basically an asynchronous server that replaces the Zoe server in remote machines,
using Zoe environment variables (host, port, etc.) to identify itself as the server the
agents should be connecting to.

This, however, is not the only task performed by the outpost program. Apart from
message and agent routing, it also satisfies special requests with specific operations
named actions, which are triggered with a message addressed to the outpost itself
using its unique ID.

All the functions and methods have been developed following a modular approach
that facilitates the debugging and the implementation of more complex functions by
means of simpler ones.

The following shows an overview of the outpost implementation.

3.2.3.1 Routing

When a message arrives, the outpost determines whether it should relay it to an agent
it recognizes (in the same machine), to the Zoe server (through the tunnel) or if it
contains a special action the outpost itself must perform (see Actions section).

Messages are relayed to the server if their destination is the server itself or the
destination agent is unknown. The process to determine the destination of a message
is as follows:

1. Read the destination tag of the message (dst) and discard the message if no tag
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is present
2. Check the internal dictionary/hashmap maintained by the outpost. This map

contains key-value pairs where the identification key is the name of the agent
and the value is the port number where it is located

3. If the agent is not found in the map, the Zoe configuration file containing the
mapping is checked (etc/zoe.conf). This file is used to populate the map on
startup and to update the map when needed

4. If the agent is found after any of the previous two steps, the message is delivered
5. When the agent is not found anywhere, the outpost supposes it is located in the

central machine and relays the message to the Zoe server

The aforementioned works surprisingly well with the Zoe architecture but has an
additional issue: the Zoe server may resend a relayed message to the outpost indefinitely.
Such case is observed when the outpost does not recognize the agent but Zoe still
thinks that the agent is located in the outpost. In practice this may result in a possible,
and unintended, saturation of the communication channel given that the message is
sent back and forth “forever”.

To prevent this behaviour, the outpost performs a small modification to the message
when relaying to Zoe. This modification consists on the inclusion of an additional tag
_outpost_replay=0 that is automatically ignored by the Zoe server, given that it is
an unknown element, but remains in the message when the server sends it back to the
outpost.

Its purpose is to identify how many times the message has been through the outpost,
and its value is incremented by one by the outpost each time a message containing the
tag is received. When the value of the tag reaches 5, the message is automatically
discarded by the outpost.

3.2.3.2 Actions

When a message has the outpost as its destination, it may specify a special action
tag that indicates the special operation to perform. Should this tag not be present,
the outpost shall discard the message.

The following sections explain in detail each of the actions the outpost performs.

Gathering agent information

Triggered by the action=gather-agents tag, this is the most complex action im-
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plemented. The outpost measures the MIPS (Million Instructions Per Second) the
agent is currently executing by means of the Linux perf tool (see Resource gathering
section).

However, it is not up to the outpost to decide what to do with this information.
Instead, it simply relays the data to the Scout agent, that will use it in the process of
load balancing (see Load balancing section).

Refreshing users information

Triggered by the action=refresh-users tag. This action is implemented in order
to increase compatibility with agents that access the information of Zoe users, for
instance to check for permissions.

Periodically, the outpost is sent a serialized copy of the etc/zoe-users.conf file from
the central server. When received, the data is deserialized and the contents of the file
updated. By doing so, an administrator would only need to change the original file to
have the changes replicate to the other machines.

Adding an agent to the outpost

Triggered by the action=add-agent tag. With the name of the agent and port
included in the message, the outpost updates the internal map and configuration file
(see Routing section) with the new agent.

This operation is required in order to recognize an agent for message relaying.

Removing an agent from the outpost

Triggered by the action=rm-agent tag. As opposed to the previous action, the agent
is removed from the map and the configuration file so that the outpost will not try to
deliver any message and relay them to the central server instead.

Cleaning agent files

Triggered by the action=clean tag. When an agent is migrated from the outpost to
another machine, its static files (see File migration section) have to be removed from
the system.

Given that the outpost is unaware of which files belong to the agent in order to reduce
complexity of the implementation, the message contains a list of paths that should be

35



removed sent by the Scout.

Launching an agent

Triggered by the action=launch tag. Starts an agent process.

The most common scenario where this action is applied is when an agent has been
migrated to the outpost: its process is started and the data restoration process (see
Data migration) begins.

Stopping an agent

Triggered by the action=stop tag. Stops an agent process.

Similarly to the previous action, this one is used when an agent is going to be migrated
to a different machine. Note that at this point, all the data of the agent has been
previously stored.

Reloading configuration

Triggered by the action=reload tag, the outpost will read the configuration files
and update its internal variables, including the router. As it is not uncommon to
perform maintenance or modify settings while the outpost is running, this action tries
to alleviate the process by providing a way to update those values without having to
restart the outpost (with the downtime that would involve).

Registration with Zoe

While not an action that can be triggered manually, this functionality is very important
for the correct operation of the system.

Firstly, when an agent is started, it may send a register message to the server to
indicate its name and port. It is the job of the outpost to intercept that message and
update its internal routing map. However, the Zoe server must know where to find the
agent, therefore the outpost builds a new message for the server in order to register
the agent in the tunnel.

Taking into account that the outpost knows the port used by the tunnel in the central
machine (set in the configuration), the resulting relation for Zoe would be that the
agent can be contacted through the tunnel port number (e.g., 29999 ) that connects
directly to the outpost server.
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Secondly, apart from registering its agents on startup, the outpost registers itself with
Zoe (also with the tunnel port number). This allows addressing the outpost through
the server by reusing its original communication architecture (see Communication
section), greatly simplifying the implementation as a secondary communication channel
between Scout and outposts is not required.

3.2.4 Scout

The Scout works as a regular Zoe agent (see Agents section): it receives messages from
users, discarding them if the user does not belong to the admin group, and performs
periodic management tasks.

As a normal Zoe agent that implements the original standard library, the Scout is able
to access all the communication channels known to Zoe. This allows for communication
by means such as Jabber/XMPP, Telegram or email. Such communication interface
was implemented in a generic manner so that any future channel may interact with
the agent.

The functionalities implemented in this agent are much more complex than those
implemented in the outpost code, mainly due to the fact that the Scout has to manage
all the outposts and knows where each movable agent is located at every moment.
This management is performed on a best-effort basis, as each outpost may respond at
different times and deadlines cannot be guaranteed in such architecture.

All the functions and methods have been developed following a modular approach
that facilitates the debugging and the implementation of more complex functions by
means of simpler ones.

The following sections detail both periodic and message-triggered tasks.

3.2.4.1 Periodic tasks

As shown previously (see Agents), Zoe agents are small asynchronous servers that
execute tasks on demand. Introducing synchronous tasks to this architecture helps
perform special operations without any intervention from the users. In the case of the
Scout, these tasks are mostly related to communication with outposts and the agents
that are able to migrate.
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Gathering agent information

The purpose of this task is to gather the MIPS of each agent at regular intervals. The
implementation is the same as the one in the outpost (see Gathering agent information
outpost section) for agents located in the central machine, where the Scout is located.

However, this task is also in charge of triggering the same functionality in all the
outposts configured by sending individual messages to each of them. Note that these
messages expect no immediate response, and the result of the remote operation is
parsed in a separate task.

Refreshing local information

Accounting for the possible scenario in which an administrator configures an additional
outpost or installs a new outpost agent, the Scout periodically checks for changes in
configuration files (outpost list, main scout configuration) and directories (agent static
and dynamic rules).

This information is stored in a database that contains agent resources and relative
locations, as well as status of each outpost, employing a relational architecture to that
end.

Sending users configuration

As mentioned previously (see Refreshing users information outpost section), several
agents require access to the users configuration file (etc/zoe-users.conf) to check for
permissions and other relevant information. While this file could have been accessed
by opening a SSH connection from the outpost, that would imply duplication of keys
and higher complexity of the protocol.

Instead, and benefiting from the fact that both Scout and outpost are written in
Python, the whole contents of the file are serialized and sent to each of the outposts
known to the Scout.

Load balancing

With the MIPS obtained for each of the agents and knowing their current locations
and capacity of each machine, the Scout is also in charge of performing the load
balancing. In essence, this task is a proxy between the load balancing algorithms (see
future Load balancing section) and the internal migration algorithm implemented in
the agent.
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In a real time system, the MIPS gathering would be performed just before performing
the balancing to make sure the balancing is as accurate as possible. As this is not
possible, the load balancing task is executed less frequently than the gathering one in
order to work with recent enough information.

3.2.4.2 Triggered tasks

These tasks may be triggered by either an user, through any communication channel,
by outposts replying to a request (e.g., gather agent MIPS), or by migrated agents
(e.g., save/restore information).

Closing a SSH tunnel

SSH tunnels are automatically closed when the main Zoe server is stopped. However,
there are times when an administrator may want to close a tunnel manually: the
remote machine is going to be stopped, the outpost is to be restarted with new
configuration, etc.

This task can only be triggered by a message from an administrator.

Holding an agent

Load balancing moves agents across all the machines automatically. While this
behaviour is the one expected in a fully automated environment, it would be inefficient
in scenarios where an agent has to stay in a specific machine, for instance to monitor
that machine or to access a resource which is only available there.

For such cases, administrators can flag an agent as held in place. The Scout maintains a
list of agents on hold and ignores them when the load balancing is launched, effectively
keeping them in their current location. However, the MIPS of these agents are still
considered for the hypothetical loads of the machines in which they reside and can,
therefore, affect the balancing.

This task can only be triggered by a message from an administrator.

Launching an outpost

Once a SSH tunnel has been established, the Scout can proceed to launch the remote
outpost. This process is done automatically for each outpost when the scout is started,
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but can also be triggered by an administrator when needed. The only requisite is that
the SSH tunnel be open at the time of launch.

There is an additional consideration to be taken into account: as the real status of
the outpost process is not known, the Scout restarts the outpost server and the
agents present there. While this involves some downtime, it makes sure that all
newest configurations are used when launched.

This task can only be triggered by a message from an administrator.

Making a backup

As shown in File migration, agent files are identified by static and dynamic files. A
backup of the static files is always kept in the central machine so that they can be
transferred directly to the required outpost (or copied if the agent is in central server).
This backup is just a simple directory containing the tree structure for all the files
belonging to the agent relative to the Zoe root path.

Said tree can be directly copied on top of the root Zoe/outpost path in order to migrate
the files, and is recreated each time the agent is migrated from central to a different
outpost. The reason for this is because an agent can only be updated/installed by
means of the Zoe agent manager when it is in the central machine. That is why the
directory tree is always kept updated when migrated.

This task may be triggered by a message from an administrator, but is also triggered
automatically when, as specified before, an agent is migrated from the central machine.

Migrating an agent

The Scout is in charge of migrating agents to other machines. This process checks
the origin and destination of an agent and performs the notification to the agent (to
prepare for migration and stop), file copying and outpost notification (to add and
launch the agent).

Notifications are done through regular Zoe messages, but file copying and special
commands (see Additional operations section) are performed by means of a SSH
connection (when dealing with remote migrations). After the migration, all the
relevant databases and files are updated.

This task is triggered by either a message from an administrator wanting to migrate
an agent to a specific location or automatically when performing load balancing.
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Opening a SSH tunnel

Even though tunnels are automatically opened when the agent is started, administra-
tors are also able to open them when needed, for instance after closing it to update
its configuration.

Internally, this functionality calls the autossh tool to maintain the tunnel(s) open.
The command executed has the following form:

autossh -L <LT>:localhost:<RP> -R <RT>:localhost:<LP> <user>@<host>

Where:

• LT is the port number to use as local tunnel end (in central server)
• RP is the remote port number to which the tunnel is connected (in remote

machine, outpost port)
• RT is the port number to use as remote tunnel end (in remote machine)
• LP is the local port number to which the tunnel is connected (in central server)
• user is the username to use in the connection as configured in the remote system
• host is the IP or hostname of the remote machine

Note that the information is extracted from the outpost list etc/scout/outpost.list
file and that the process results in two tunnels being opened for the outpost (read
and write) as shown in the SSH tunneling section.

In addition, this process supposes that public key authentication has been properly
configured.

Agent information retrieval

After an agent has been migrated, it asks the Scout for its stored information, if any.
The Scout then looks for the serialized data in its database and sends a message to
the migrated agent if there is information to deliver (see Data migration section).

In case no information is found, any message stored for delayed relaying is sent, as
this process would be triggered by the agent after restoring its information. Given
that there is no information to restore, the agent will only trigger that retrieval if the
developer indicated it explicitly.

This task may be triggered by an administrator for testing purposes, although it
should be triggered by agents in a normal execution.
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Message retrieval

Similar to the previous case, this task delivers any pending messages the agent may
have in order to complete the operations requested during the time it was preparing
for the migration. Note that this supposes agent information has been previously
restored.

This task may be triggered by an administrator for testing purposes, although it
should be triggered by agents in a normal execution.

Showing agent locations

At a given time, administrators may want to check current locations of all the outpost
agents. This task returns a list of locations and the agents present in them in a plain
text manner that can be represented by all the communication channels supported by
Zoe. The following is an example response:

# Agent locations

outpost_pi
---------

central
---------
outpostest
madtrans
fibonacci
dummy1
dummy2
dummy3

Showing agent status

This task provides information on the status of agents. The base implementation
includes the following information:

• Whether or not the agent is on hold
• Current location of the agent
• Latest obtained MIPS of the agent
• Date and time when the information was updated
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A response from this task would look like the following:

# Agent status

outpostest
---------
FREE
- Location: central
- MIPS: 0.008592
- Last update: 10-05-2016 17:54:53

madtrans
---------
FREE
- Location: central
- MIPS: 0.008264
- Last update: 10-05-2016 17:54:53

Showing outpost status

In the case of outposts, the status information delivered consists of the configured
values in the outpost list file, if the outpost is running, when the information was
updated and, in the case of the central server, the load balancing algorithm in use.
An example response would be as follows:

# Outpost status

central
---------
ONLINE
- Balancer: none
- MIPS: 5217.933559
- Priority: 3
- Last update: 06-04-2016 20:42:43

outpost_pi
---------
ONLINE
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- Host: 192.168.1.50
- Remote port: 30000
- Local tunnel: 29999
- Remote tunnel: 29999
- Remote directory: /home/zoe_outpost
- MIPS: 132.287850
- Priority: 2
- Last update: 06-04-2016 20:42:43

Stopping an outpost

As opposed to the previous case, this task stops an outpost and all the agents
running in it on demand. Note that stopping an outpost does not close the tunnel
implicitly, requiring another manual operation to do so.

This task can only be triggered by a message from an administrator.

Agent information storage

The Scout stores whatever information an agent sends serialized before its migration.
This information is stored in a relational database and is only retrieved when asked
for.

This task can/should only be triggered by a migrating agent.

Agent resource storage

Previously, it was stated that the Scout sent messages asking for agent MIPS to each
of the outposts configured. This task receives and parses the response messages from
the outposts and updates the database records with the new information.

This task can/should only be triggered by an outpost.

Agent message storage

As said before, when an agent enters the migration preparation phase, it ignores all
incoming messages and instead relays them to the Scout. This task receives these
messages and stores them in a database for further delivery when asked for.

This task can/should only be triggered by a migrating agent.
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Freeing an agent

As opposed to holding an agent, an administrator can use this functionality to flag
an agent as free, meaning that it will be moved automatically if needed in the load
balancing process. As before, the list of held and free agents is updated after flagging
an agent.

This task can only be triggered by a message from an administrator.

3.2.5 Resource gathering

Resource gathering in the system is performed through the Linux perf tool. This
utility was introduced in the Linux kernel in version 2.6.31 [30] and is available in
most kernels bundled with GNU/Linux distributions (kernel 4.5.5 was the latest stable
version at the time of writing).

By using perf, both Scout and outposts can access several counters and events, although
the only information used is the number of instructions executed by an agent in a
given period. Such number is obtained by spawning a new process that will run the
perf executable for each agent in execution that will attach to the agent PID (Process
ID) for 5 seconds.

The PIDs for all agents are available in the var/ directory in the Zoe root directory,
meaning that no additional modification is required for this process, and once the perf
processes terminate the MIPS value is calculated for each agent.

In this case, only the number of instructions performed by the processor and the time
taken to complete the LINPACK benchmark were necessary. In order to obtain that
information, perf was used to launch the benchmark and obtain the events and time.
As this results in the total number of instructions and time in seconds, the MIPS have
to be calculated through the following formula:

MIPS = Instructions
Timeseconds · 106 (3.1)

Note that any other benchmark may be used for this purpose and the decision of which
benchmark to use must be taken by the administrator(s) configuring the systems.
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3.2.6 Dashboard

The dashboard is a small program, with a GTK+ based user interface, used as a
secondary way to view current data managed by the Scout at a glance. The data that
can be visualized in the dashboard is current agent locations and current resources
stored for those agents.

This program may be executed in the same machine as the main Zoe instance (central
server) or in a remote server, although it would require SSH credentials to fetch a copy
of the databases and relevant files periodically. More details on how the dashboard is
used can be found in the Dashboard section of Appendix B.

It should be noted that, while useful for easy visualization of locations, the recom-
mended (and more efficient) way of interacting and viewing current data from the
system is by using the commands implemented in the Scout. These commands are
implemented as an internal component in the Zoe architecture and thus are fully
integrated with the messaging system without requiring any additional workaround
(such as registration with the server for the replies).

3.3 Load balancing

Load balancing is a functionality that was implemented expressly with the idea of
being easy to extend. In the practice, the Scout is not aware of how the load balancing
algorithms work and simply inputs specific information and receives the output of the
algorithms indicating the new destinations of the agents.

On one hand, the information that is passed as argument to the algorithm function is
a map which contains agents, grouped by their current outpost, their location, their
current MIPS, the timestamp of the latest update to their information, whether they
are on hold or not and the priority of the outpost. This is basically all the information
the Scout has available for each of the agents. On the other hand, the output obtained
from the algorithms is a map that groups agent names by their new destination.

Figure 3.5: Load balancing algorithm

Even though algorithm implementations themselves are considered a black box, as
illustrated by Figure 3.5, the Scout knows which algorithm to execute by an unique
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identification tag that is set in the configuration files of the agent. By completely
separating the algorithm implementation from the rest of the agent code, other
developers would be able to include new algorithms without needing to understand
the rest of the software as long as they work with the parameters specified previously.

The work implemented includes two base algorithms, equal balance and priority
(which will explained in the next sections), although as stated before, it should be
possible to easily extend these algorithms or add new ones in the future.

3.3.1 Equal balance algorithm

The aim of this algorithm (identified by the tag equal but also referred to as balanced)
is to try to maintain, as much as possible, an equal load among all outposts and
central server. This process considers both agent MIPS and machine capacity (as
measured with LINPACK or other benchmark) in order to calculate current load
percentage of the machine the agent is located in and hypothetical load percentage of
the machine to which the agent could be moved. The algorithm is as follows:

1. Parse MIPS of the agents and capacity of each outpost
2. Initialize a list of outposts with their current load percentage
3. Continue with next agent or exit if there are no agents remaining
4. If the agent cannot be moved, calculate the load percentage and add it to the

load of its current machine. Continue from 3
5. Order the outpost load list in ascending order (min to max)
6. Calculate the new hypothetical load percentage for the first outpost in the list

and add the agent to the outpost in the resulting map. Continue from 3

Calculation of the percentages is performed by the following operation:

Loadpercentage = MIPSagent

MIPSmachine

(3.2)

The performance of this operation greatly depends on the processor used to calculate
it: considerable precision is required for the calculation as, depending on the MIPS
capacity of the machine, the resulting percentage may be very small (i.e., 0.00070678
out of 1).

By sorting the hypothetical outpost loads in ascending order, the algorithm makes
sure that the outpost with the lowest load is filled first. Even though the result is an
approximation, given that the agents are balanced in a first come first served manner
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and without considering all the MIPS before the balancing, the result is deemed
appropriate taking into account that Zoe agents do not usually have a very high load.

3.3.2 Priority algorithm

The priority algorithm (identified by the tag prio) uses the same information as the
equal balance algorithm (agent MIPS and machine MIPS capacity) plus an additional
setting that is found in the outpost list file (etc/scout/outpost.list) used to specify
the priority of a machine for this algorithm.

Such setting consists of an integer value, ideally starting with 1, which translates into
a lower priority as the value increases. For instance, a machine with a value 1
would have higher priority than a machine with a value 4 and will be considered first
in the algorithm. The reason for assigning priority to values in reverse order is mainly
so that lower priority levels can be easily added (simply increment the number) while
keeping the highest priority intact (value 1).

The balance algorithm is as follows:

1. Parse MIPS of the agents and capacity and priority of each outpost
2. Initialize a list of outposts with their current load percentage
3. Sort the outposts by priority (ascending)
4. Continue with next agent or exit if there are no agents remaining
5. If the agent cannot be moved, calculate the load percentage and add it to the

load of its current machine. Continue from 4
6. Calculate the new hypothetical load percentage for the first outpost in the list.
7. If the load exceeds the limit, continue with next in the list until a proper

destination is found
8. If all the hypothetical loads exceed the limit, send the agent to the central server

by default (updating its load percentage)
9. Continue from 4

As shown, this algorithm performs the same calculations as the equal balance algorithm
but assigns the destinations by user-defined priority rather than current load. The
limit mentioned in steps 7 and 8 is a value of 0.8 (80%) that was set as an algorithm
parameter in order to prevent overload of the machines where possible.

Finally, the reason for sending agents to the central server if no suitable destination is
found in the algorithm (i.e., no destination can take the load) is twofold: the central
server is assumed to have more resources available, considering it has to deal with
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regular agents, and this way the leftover agents are easily localized.

3.4 Class diagrams

Figure 3.8 shows the main UML class diagram of the project. This includes the relevant
classes inherited from the standard Zoe Python library and how each component
interacts with the others.

Regarding the Scout and outpost classes, note that each of them has a set of additional
modules contained in a package/library (libscout and liboutpost respectively) custom
made for them. Each function and class in these modules was created to facilitate
development and maintenance of the methods for both Scout and outpost classes.
Therefore they will not be explained in further detail due to being building blocks
that form said methods. A brief summary of each module would be:

• libscout: Scout helper library
– algorithm: contains load balancing algorithm implementations
– book: implements singleton classes to ease access to the local database
– db: defines the database models used to store agent and outpost information
– log: contains an utility function to configure logging for the agent
– messages: contains functions that generate various Zoe protocol messages
– static: contains static constants and objects (such as those defined in the
book module) used throughout execution

– util: implements functions used to compose Scout methods
• liboutpost: outpost helper library

– actions: implements outpost actions
– log: contains an utility function to configure logging for the server
– messages: contains functions that generate various Zoe protocol messages
– util: implements functions used to compose outpost methods and actions

There are, however, two components of the libscout library that require further
explanation. The first of them is the algorithm module, shown in Figure 3.6, which
defines a singleton class (Balancer) that can be easily extended to include new
algorithms by adding a method and its identifier to the _algorithms dictionary.

The second module is the db module, which contains the database models and is
shown in Figure 3.7. These models are used in the data migration process (see Data
migration) message relaying (see Message relaying) and resource/MIPS storage:
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• AgentInfo: stores serialized data of the agent
• AgentMessage: stores relayed messages due to migration
• OutpostZone: stores current status of known outposts
• AgentZone: stores current status of known agents

Figure 3.6: libscout algorithm module

Figure 3.7: libscout db module
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Figure 3.8: Proposed solution class diagram
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3.5 Requirement analysis

Several requirements were set for the development of this project. Each of them are
modeled from the point of view of a specific user role (developer, administrator, user),
although there are cases in which a requirement may affect different scopes at the
same time.

The following sections describe all the requirements grouped by role, details include:
identification code (using format X-YY, where X is a letter and YY is a two-digit code),
user story, any conditions necessary to accomplish the requirement and how the
requirement was achieved in the implementation.

3.5.1 Developer requirements

These requirements are written from the point of view of a developer that creates new
agents and functionalities for the Zoe platform. This implies direct interaction with
the protocol and implementation.

D-01

As a developer, I want my existing code to work without modifications.

This implies that already existing agents should work regardless of the outpost system
(including Scout agent) being present or not. The requirement is satisfied through
design decisions: functionality of outpost agents library does not replace the original
standard library, meaning that the developer must explicitly enable that functionality
by updating their agent.

D-02

As a developer, I want to change less than 10% of my code to use the outpost func-
tionalities.

Considering that the complexity of agent implementations varies greatly depending
on their use case, 10% would be an appropriate approximation for a breakpoint for
this use case: simpler agents would not need to change too many lines while more
complex agents may require custom migration algorithms.

Furthermore, and as shown in the Standard library section, the standard library is
designed, and implemented, to be easy to plug into already existing code.
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D-03

As a developer, I want my outpost agent to work without a Scout.

A scenario in which the Scout agent is not present had to be considered, as adminis-
trators may choose to disable that functionality. However, the library implementation
must be present in the available Zoe libraries for the agent to work (e.g., they could
be added to the basic Zoe distribution).

If the Zoe instance lacks the Scout agent, then the outpost agents would continue to
work as normal agents, and the server should discard messages directed to the Scout.

D-04

As a developer, I want my agent to keep data across migrations.

Developers should be able to specify which data should be stored before migration
and restored after migration is done. This is achieved through the Standard library
implementation.

D-05

As a developer, I want my agent to serve all the requests it receives.

Even when migrating/migrated, agents should serve all the requests they have received
at some point. In the system design, this would be achieved by relaying incoming
messages to the Scout when migrating and retrieving them once migrated.

While that would mean requests would not obtain a response as soon as they would
have in the original system, the implementation would make sure all of them are
completed at some point, effectively dealing with the availability of the service.

In addition, the outpost server makes sure that all messages that have the agent as
destination are correctly delivered from the central Zoe server.

D-06

As a developer, I want my agent to be able to migrate.

In order for an agent to be able to migrate, the following conditions must be met:

• The developer should include static and/or dynamic files in the distribution of
their agent

• The developer should implement the standard library interface for the outpost
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protocol (directly related to D-02)
• The developer should specify data to keep after migration (related to D-04)
• The agent should serve requests in any location (related to D-05)

D-07

As a developer, I want to develop my agents in any programming language.

By design, agents for Zoe can be developed using virtually any programming language.
The solution and its implementation should also comply with this in order to be usable
by all Zoe agent developers.

The solution to this requirement came in the form of the designed protocol (see
Protocol). Even though the implementation was performed only for the Python
programming language due to current agents using that same language, it was designed
to be easily implemented for others by using mechanics, such as serialization, which
have a counterpart in other languages.

3.5.2 Administrator requirements

These requirements are written from the point of view of an administrator that sets
different configuration aspects of the Zoe system. This implies direct interaction with
configuration files of the system.

A-01

As an administrator, I want to be able to choose whether or not to use the outpost
system.

As the proposed solution is not a general use implementation, an administrator may
choose to disable the added functionality. Such scenario would simply require moving
the agents/scout directory to disable-agents/scout so that the Scout agent is
prevented from launching.

All the agents that implement the outpost library would simply work as regular Zoe
agents and the server would ignore outpost protocol messages.

A-02

As an administrator, I want to be able to configure remote outposts easily.
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Administrators should be able to decide how the outposts are executed remotely, how
the connections are made, and other variables that define the outpost configuration. To
this end, the settings included in the implementation were made simple to understand
and modify (by setting values in a plain text file), not imposing too many hard
requirements on the administrator.

A-03

As an administrator, I want to be able to configure load balancing.

Following what was defined in A-02, automatic load balancing is available in the imple-
mentation and can be configured through a specific setting in one of the configuration
files.

The module that contains the algorithm implementations was designed in such a way
that it allows administrators to include their own algorithms while including several
useful algorithms in the official distribution.

A-04

As an administrator, I want to be able to migrate agents manually.

In scenarios in which automatic load balancing is disabled, administrators may choose
to move agents to specific locations. Some possible use cases where this requirement
could be applied would be:

• Manage a mailing list in a remote server
• Perform intensive computations in a powerful node
• System monitorization

That is why a communication interface was implemented in the agent by using basic
Zoe functionalities (e.g., communication channels, natural language, etc).

A-05

As an administrator, I want to be able to know where each agent is located.

While the A-04 requirement specifies that an administrator should be able to migrate
an agent manually, it does not deal with knowing the location of each agent and the
available locations.

This requirement was satisfied in a similar manner to the previous one: a com-
munication interface that showed current locations was implemented in the Scout
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agent.

A-06

As an administrator, I want to be able to know the status of outpost agents.

Again related to the previous requirements, an administrator should have a way of
obtaining information on the outpost agents without having to connect to the central
server machine and open the database files manually.

This was solved by including a natural language command that returned relevant
information on known agents, including location and their current MIPS.

A-07

As an administrator, I want to be able to know the status of the outposts.

Similar to A-06, this requirement deals with the status of the outposts themselves.
The natural language command that satisfies this requirement returns information
such as whether the outpost is online or not, its host address and tunnel details.

A-08

As an administrator, I want to be able to keep an agent from migrating automatically.

The use cases shown in A-04 can be applied to this requirement as well. In scenarios
where automatic load balancing is enabled and the administrator needs/wants an agent
in a specific machine, this agent should be ignored by the load balancing algorithm.

To accomplish this, a natural language command was introduced. This command flags
an agent so that it would be ignored by the balancing algorithms.

A-09

As an administrator, I want to be able to allow an agent to migrate automatically.

This requirement is the opposite case for requirement A-08, and would give the
administrator the means to undo the previously specified hold and allow an agent to
be migrated automatically by the active load balancing algorithm.

Again, a command satisfied this requirement. In this case, the agent would be
unflagged.
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A-10

As an administrator, I want to be able to change configurations during execution.

The aim of this requirement is to reduce possible downtimes that would occur when
an administrator changed configuration values related to the outposts in their Zoe
instance. This downtime would have been due to the necessity of restarting the system
for the changes to take effect.

In order to be as non-intrusive as possible in that sense, the Scout was designed to
check configuration values periodically or when needed, always working with up-to-date
settings instead of loading them on startup.

While this approach has the penalty of accessing the filesystem continuously for
reading, the volume of data to read is not very high and it should not have such a
great impact.

A-11

As an administrator, I want to be able to start an outpost manually.

Directly related to requirement A-10, should an administrator change outpost con-
nection settings, or simply desire to start a previously stopped outpost, they should
be able to do it.

As with previous requirements, this was solved by including a command which allowed
administrators to start an outpost on demand by specifying its identification name.

Note that this requirement does not affect the tunnel that would connect the central
server with the remote machine.

A-12

As an administrator, I want to be able to stop an outpost manually.

Directly related to requirement A-10. Scenarios in which an administrator may wish
to stop an outpost include:

• To save resources in a remote machine (not being used currently)
• To change low level system configurations
• To restart it later on due to an error

As the counterpart of the previous requirement, a natural language command to allow
this functionality was implemented.
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Note that this requirement does not affect the tunnel that would connect the central
server with the remote machine.

A-13

As an administrator, I want to be able to open a tunnel manually.

This requirement has a close relation to requirement A-11, given that the previous
requirement does not include tunnels in its definition. Tunnels should be treated as a
separate element in the implementation, although they should be identified by the
outpost identification name as well.

This requirement was also assessed by implementing a natural language command to
open the tunnel to an outpost using the configuration stored in the system.

A-14

As an administrator, I want to be able to close a tunnel manually.

Directly related to A-12. The administrator should be able to terminate the tunnel
without affecting the outpost execution itself. This could be needed in cases such as
system reboot or modification in tunnels.

Again, this was solved by introducing a natural language command.

A-15

As an administrator, I do not want to store any additional passwords in the system.

No additional password should be required by the outpost system, as that would
require designing a secure storage for said passwords. As the only additional credentials
this solution introduces are those required for the SSH connection, this requirement
was satisfied by allowing only public key authentication for the connections.

That way, the administrator would only need to manage the private keys of their
system as they would normally do, and may even generate a new key-pair specifically
for this purpose.

A-16

As an administrator, I want the outpost system to work in any hardware architecture
supported by my GNU/Linux operating system of choice.
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This requirement is very important, as it takes into consideration portability of the
solution, not enforcing a particular hardware architecture.

As explained previously, the solution (Scout and outpost) was implemented using the
Python programming language, which provides the required portability as long as
there is a Python interpreter available.

3.5.3 User requirements

These requirements are written from the point of view of a regular user that com-
municates with Zoe agents through a communication channel such as email or chat
(Telegram, Jabber/XMPP, etc.).

U-01

As a user, I cannot tell whether outposts are used or not

Given the nature of the project, this requirement is easily satisfied with the implemen-
tation provided: all the code and protocol specification are located in the low-level
architecture of Zoe, leaving user interaction with the agents intact and working in a
transparent manner.

3.6 Validation tests

Taking into account all the requirements defined in the previous Requirement analysis
section, it is necessary to prove that all of them are satisfied. In order to do this, the
following validation tests were designed.

Each test is identified by a code using the format VT-YY, where YY is a two-digit code
and has a short description of the test. A traceability matrix showing the correlation
between validation test and requirements is included at the end of the chapter.

VT-01

Execution of a normal agent in the new system.

This implies running an original Zoe agent (in this case, madtrans) in a system where
the outpost architecture has been implemented (in the central server).

59



VT-02

Convert a normal agent to an outpost one.

In this case, the agent madtrans is updated to be an outpost agent (capable of
migrating), using the standard library addition, to see if it continues to work normally.

VT-03

Execution of the system without a Scout.

This test consists on running the Zoe system without the Scout agent being present but
with at least one outpost agent (in this case, outpostest) to observe if the outpost
agents behave as normal agents without a Scout in place.

VT-04

Migrate an agent to a remote outpost.

Perform manual migration of an outpost agent (in this case, outpostest) to a remote
machine/outpost. This test effectively covers all the File migration and Data migration
parts of the protocol.

VT-05

Execution of a load balancing algorithm.

In this case, the equal-balance algorithm is used to test the correct functionality of
automatic migrations (as opposed to the manual migration performed in test VT-04).

VT-06

Execution of Scout commands through a communication channel.

In this test, the user communicates with the Scout through a communication channel
(in this case, Telegram), to execute several commands implemented (see user manual
in Appendix B).

VT-07

Execution of a load balancing algorithm with agents on hold.

As opposed to test VT-05 where all the agents were free to migrate automatically,
this time the outpostest agent was on hold in the central server while the madtrans
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agent was free to migrate.

VT-08

Add a new outpost agent during execution.

For this test, agent dummy1 is added to the central server after the system has been
started .

VT-09

Stop and start a running outpost manually.

This consists on executing the relevant commands through the communication channel
(in this case, Telegram) to effectively restart an outpost.

VT-10

Stop and start a SSH tunnel manually.

This consists on executing the relevant commands through the communication channel
(in this case, Telegram) to effectively restart a SSH tunnel.

VT-11

Implement the outpost in a hardware architecture different to the central server.

In this case, this is achieved by installing all the relevant software and files to a
Raspberry Pi (armhf) while the central server is running on a different architecture
(x64).

3.6.1 Traceability matrix

Table 3.1 contains the traceability matrix for the aforementioned validation tests,
indicating which test validates each of the requirements specified previously. Note
that there is also a column for requirements that are considered to be implicitly tested
as part as complete operation of the system.
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Table 3.1: Validation test traceability matrix

VT
D-
01

D-
02

D-
03

D-
04

D-
05

D-
06

D-
07

A-
01

A-
02

A-
03

A-
04

A-
05

A-
06

A-
07

A-
08

A-
09

A-
10

A-
11

A-
12

A-
13

A-
14

A-
15

A-
16

U-
01

Implicit X X X X

01 X

02 X X

03 X X

04 X X X X

05 X

06 X X X

07 X X

08 X

09 X X

10 X X

11 X
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Chapter 4

Planning

This section shows the planning for this work. In particular, the time planning and
cost estimation of the project are presented in detail.

4.1 Time planning

The Gantt chart for this project can be found in Figure 4.1. The next lines explain all
the tasks created for the development of the complete project.
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Figure 4.1: Project Gantt chart
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• Solution study. Throughout the duration of this task, and considering that the
problem to solve has already been defined, different solutions and their viability
are studied in depth. This study involves building small implementations using
the methods offered by each solution to see if they satisfy the requirements
imposed on the project and can be further developed.

• Project planning. Once a solution has been chosen, it is necessary to plan the
complete development of the project. This includes the Gantt chart in Figure
4.1 and the necessary steps to complete the project. Requires: Solution study

• Requirement analysis. Every system developed must comply with a series of
requirements that define the functionality they should offer and how they work.
These requirements can be found in the Requirement analysis section. Requires:
Project planning

• Design. In the design phase, the different components of the solution are drafted,
including their interactions and other details needed in the system. This meta-
task includes three additional tasks: protocol design, scout design and outpost
design.

– Protocol design. This task defines the protocol (see Protocol) and low-
level details such as the SSH tunneling, communication mechanisms and
the library design. Requires: Requirement analysis

– Scout design. Through the duration of this task, the Scout agent and its
functionalities are designed, in addition to configuration files and databases.
Note that this task and the Outpost design one are allocated in parallel in
order to work on both at the same time, given the need to have common
interaction between them. Requires: Protocol design

– Outpost design. In the period specified by this task, the outpost server
and its functionalities are designed, in addition to configuration files. As
specified previously, this task is worked on in parallel to Scout design.
Requires: Protocol design

• Implementation. In the implementation phase, all components previously
designed are developed and their correct functionality tested at the same time
(see Functionality tests). It includes four additional tasks; library implementation,
scout implementation, outpost implementation and dashboard implementation.
Note that all of them are developed in parallel.

– Library implementation. In this task, the outpost standard library for
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Python is developed (see Standard library). Requires: Protocol design

– Scout implementation. In this task, the Scout agent for Zoe is imple-
mented (see Scout), in addition to management of tunnels and outposts,
which are considered internal functionalities of the agent. Requires: Scout
design

– Outpost implementation. In this task, the outpost microserver is imple-
mented (see Outpost). Requires: Outpost design

– Dashboard implementation. The dashboard is a very simple secondary
way of visualizing current status information extracted from the Scout agent.
As it uses the same database models as the agent, its implementation does
not require much time.

• System evaluation. In this phase, the solution is tested in a real scenario. In
particular, these tests deal with load balancing (see Performance tests), as the
functionalities are tested in the Functionality tests.

– Test design. Throughout the duration of this task, the different perfor-
mance tests for the implemented load balancing algorithms are designed.

– Testing. Once designed, the tests are performed in the time period of this
task, storing the logs of the Scout agent, which contain all the information
required to evaluate the results. Requires: Test design

– Result analysis. In this task, the relevant information from the logs is
parsed and extracted, including conclusions on the results in the project
report. Requires: Testing

• Project report. The last phase of the project consists on writing the report
of the work performed. This task can be worked on in parallel to the System
evaluation one, as content from the previous tasks can be written before the test
results and conclusions are available.

4.2 Cost estimation

This section covers the cost estimation for the resources required to complete the
development of this project.

Taking into account that Zoe can be installed in less powerful machines (such as
Raspberry Pi computers), the physical resources required for the project have the
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advantage of reduced cost when compared to other computational nodes.

Even though all the hardware was already available, Table 4.1 shows the cost projection
for these resources, which include: personal (development) computer, Raspberry Pi
computer bundles and the router to which all the machines connect for testing.
Furthermore, the table includes hardware amortization values valid in Spain since 1st
of January 2015 [31].

All the computers (personal computer and Raspberry Pi computers) are considered
equipment for information processes (equipos para procesos de información) and have
a maximum yearly linear coefficient of 25% of the cost over a maximum period of
8 years. The wireless router can be placed in the category of systems and software
(sistemas y programas informáticos), and a maximum yearly linear coefficient of 33%
of the cost over a maximum period of 6 years.

However, and given that the cost of the Raspebrry Pi computers and the wireless
router are inferior to 300 e, these elements can be amortized freely [31], in this case
100% over the period of 10 months (estimated maximum duration of the project).

Table 4.1: Cost projection of physical resources

Concept
Num.
units

Unitary
cost Total

Monthly
amortization

Amortization (10
months)

Personal computer 1 649.00 e 649.00 e 2.083% 135.21 e
Raspberry Pi Model
A bundle

2 32.00 e 64.00 e 10% 32.00 e

Raspberry Pi Model
B+ bundle

1 69.95 e 69.95 e 10% 69.95 e

D-Link Cloud Router
N300 (WiFi)

1 24.99 e 24.99 e 10% 24.99 e

Total 807.94 e 262.15 e

Regarding the Raspberry Pi bundles, each of them includes additional resources which
are detailed below:

• Raspberry Pi Model A bundle: Raspberry Pi Model A board, case, 8 GB
SD card, 5V 2A power supply

• Raspberry Pi Model B+ bundle: Raspberry Pi Model B+ board, case, 8
GB MicroSD card, 5V 2A power supply, HDMI cable, USB Wifi adapter
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Table 4.2 contains the cost of fungible resources employed in the project. Such
resources include energy consumption of the previously specified hardware, which are
as follows (usual averages):

• Personal computer: 22.75 W
• Raspberry Pi Model A: 2.5 W
• Raspberry Pi Model B+: 3.0 W
• Wireless router: 6.0 W

Taking the previous values into account, two different periods have to be defined for
calculating the cost of electricity. In the first place, development process requiring use
of the personal computer, Raspberry Pi Model B+ and wireless router, which would
amount to 31.75 W and estimated 490 hours dedicated to development. In second
place, testing process requiring all the equipment shown previously (34.25 W) and
testing hours specified in the Evaluation chapter (4.3 hours).

Table 4.2: Cost projection of fungible resources

Concept Num. units Unitary cost Total

Ethernet cable (class 6 / 1 Gbps) 2 2.49 e 4.98 e
Electricity 494.3 hours 0.121 e/KWh 2.30 e
Internet connection 10 months 26.90 e/month 269.00 e

Total 275.88 e

The price for the Internet connection package has been obtained from an offer by
Telefónica de España [32] and includes telephone calls (landline and mobile) as well as
a 300Mb fibre optic Internet connection. The price for the electricity was obtained by
calculating the average of the fees for different companies for year 2016 (including 21%
VAT) [33]. Note that these prices are merely orientative, and do not include other
fees such as line rent.

Table 4.3 shows estimated costs of human resources. This estimation considers the
periods shown in the previous time planning, the different roles that participated in
the development process (even though most of them were taken by the student). The
social security percentage included is an initial estimation of the cost (extracted from
[34]), given that the actual cost depends greatly on external factors of the company
and are therefore considered out of the scope of this project.

68



Table 4.3: Cost projection of human resources

Role Cost per hour Hours Social security Total

Project manager 30.00 e 70 23.60% 2,595.60 e
Analyst 20.00 e 127 23.60% 3,139.44 e
Designer 20.00 e 45 23.60% 1,112.40 e
Programmer 20.00 e 490 23.60% 12,112.80 e
Tester 20.00 e 4.3 23.60% 106.30 e

Total 19,172.84 e

Finally, Table 4.4 shows the total estimated cost for the development of the project,
including 15% increase due to risks, such as tax changes or indirect costs, and 20%
increase due to project benefits. The total amounts include VAT.

Table 4.4: Total cost estimation summary

Concept Total

Physical resources 262.15 e
Fungible resources 275.88 e
Human resources 19,172.84 e
Risks 2,956.63 e
Benefits 3,942.18 e
Total 26,609.67 e
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Chapter 5

Regulations

This chapter briefly analyzes possible regulations and contexts in several fields that
may be applied to the developed project.

5.1 Social

This project is aimed at developers and administrators of the Zoe ecosystem. Consid-
ering the free licence under which Zoe is distributed, anyone can benefit from both
the original functionalities offered by the main project and the extended, and more
specialized, functionalities offered by this outpost system.

5.2 Legal

Being designed as a generic protocol, and system, that tries to make no assumptions
on the scenarios in which it could be executed, the project itself does not have
knowledge of the information being transmitted during migration. Responsibility for
what information is delivered lies with administrators and, to some extent, developers.

Furthermore, inter-machine connections have to be set up explicitly by an adminis-
trator, which means that they should have access/ownership/permissions necessary
to use the machine as an outpost. Moreover, by using public key authentication, the
administrator is the one responsible for generating and managing the key-pair used in
the connection, having to make sure that the private key is stored safely and the SSH
connection is correctly encrypted.
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Regarding the source code of the project, the components previously explained are
released under different licences:

• Standard library addition: which includes Python implementation of the
custom OutpostAgent class and the data migration methods is released under
the MIT licence1

• Scout,Outpost and Dashboard: which includes the source code of the Scout
agent, the outpost server and the secondary visualization dashboard, as well as
the utility libraries created for them, are released under the GPLv3 licence2

TheMIT licence allows anyone receiving a copy of the source code to use it, distribute
it, modify it (and redistribute modifications) and make commercial use of the software
with the condition that a copy of the licence is included with the software and the
original Copyright notice is kept in the code.

The GPLv3 licence grants the same permissions as the MIT licence (in addition
to patent rights), although with more conditions apart from including a copy of the
licence and keeping the Copyright notice in the code: the source code must be made
available when distributing the software, modifications must be released under the
same, or similar, licence and the user is required to list any changes made to the
software.

In addition, both licences include a clause that the software is provided without
warranty and the author cannot be held liable for any type of damage caused from
the use of the software.

5.3 Economic

While it is legally possible to commercialize the proposed solution, as shown in the
previous section, in practice it would only be possible when distributing the project as
part of a complete Zoe installation. This is due to the hard requirements the solution
has on the Zoe project (libraries, functionalities, etc.), as it is specifically tailored for
that platform.

A possible commercial use case would be providing hosting for Zoe instances, which
would be considered as providing a service and is a business model used by important
companies such as Canonical Ltd. or Red Hat, Inc.

1https://opensource.org/licenses/MIT
2http://www.gnu.org/licenses/gpl-3.0.html
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Chapter 6

Evaluation

This section presents the evaluation performed on the implementation of the solution
proposed. After and during the development of said implementation, two different
types of tests were carried out:

• Functionality tests: intended to test the correct functionality of an imple-
mented feature in a controlled environment during development

• Performance tests: intended to evaluate the performance and correctness of
the implementation using load balancing algorithms

6.1 Platform description

Table 6.1 shows the relevant hardware and software details of the systems used to
perform the tests, in addition to the benchmarked MIPS for each system and their
assigned priorities for the priority algorithm.

Functionality tests only required the first two systems (central executing the Zoe
instance and outpost_pi the outpost) as to have a reduced and more controllable
environment.

The two additional Raspberry Pi computers (model A) were configured as additional
outposts for the performance tests in order to check the load balancing algorithms
and correct functionality of the system with more servers connected.

MIPS results were obtained after 5 iterations of the HPLinpack benchmark with perf
to obtain the average time and number of instructions executed. The last two machines
outpost_arco1 and outpost_arco2 have the same MIPS considering that both had a
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clean installation of the operating system with exactly the same configuration steps
followed.
Table 6.1: Hardware and software specifications of the test systems. Note: names for outpost_pi, outpost_arco1
and outpost_arco2 were shortened to pi, arco1 and arco2 respectively

central pi arco1 arco2

Model Asus K53SV Rasperry Pi
Model B+

Raspberry Pi
Model A

Raspberry Pi
Model A

CPU Intel Core
i7-2670QM

Broadcom
BCM2835

Broadcom
BCM2835

Broadcom
BCM2835

Frequency 2.2 GHz 700 MHz 700 MHz 700 MHz
RAM 4 GB 512 MB 256 MB 256 MB
Operating
System

Debian 9
(stretch)

Raspbian jessie Raspbian jessie Raspbian jessie

Connection wireless wireless ethernet ethernet
MIPS 5217.933559389 132.287849904 138.476783011 138.476783011
Priority 3 2 1 1
Outpost no yes yes yes

Regarding the connectivity of the devices, the first two were connected to the network
using a wireless interface and the other two computers were attached through a wired
connection directly to the wireless router. This setup helped test the performance
when different communication methods are used, each with their own latency (wireless
connection in Model B+ had more latency than the rest of the machines due to how
the hardware is implemented).

Finally, the assigned priorities are interpreted as follows: both outpost_arco1 and
outpost_arco2 will be filled first in the priority algorithm, then outpost_pi and finally
central, unless the 80% limit is reached (see Priority algorithm).

Figure 6.1 shows shows the layout of the connections for the tests.

6.2 Functionality tests

Every single functionality was thoroughly designed to be easy to debug by introducing
a custom logging format which identifies the most critical points of every method and
function, allowing to easily follow the flow of execution.

Before modifying an already existing agent to test its adaptation to the new system, a
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Figure 6.1: Equipment layout for performance tests

test agent named outpostest was implemented. Its purpose was to use all the features
available in the standard library (see Standard library) and test the correct execution
of both Scout and outpost methods.

These tests, triggered by the Scout commands, helped identify and correct errors in the
implementation of the system, as the result of each operation was known beforehand
and could be compared with the one obtained (e.g., file migration, message relaying,
data storage, etc.).

6.3 Performance tests

Performance tests focus on the automatic migrations performed by load balancing
algorithms and have no interaction from the user/administrator whatsoever. The aim
is to check that agents are being migrated to all the different nodes according to the
criteria specified in the algorithm with different configurations.

Two groups of four tests each (8 tests in total) were designed to this end. The tests
included in each group are as follows:

• Execution of the balanced algorithm with all the agents free
• Execution of the balanced algorithm with some agents on hold
• Execution of the priority algorithm with all the agents free
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• Execution of the priority algorithm with some agents on hold

By having different test cases for free and held agents it is possible to compare how
this fact affects the balancing result in each case. Test runs have a duration of around
20 minutes in order to allow the system to perform several automatic migrations.

The difference between the aforementioned test groups is that the first group works
with a normal load that could be found in a regular Zoe instance, while the second
group is an extreme case in which there is an agent with a very high load. The common
agents used in both tests are:

• dummy1: synthetic agent with a higher load than the rest that simply creates 20
threads which are kept in an infinite loop performing operations asynchronously

• dummy2: same as dummy1
• dummy3: same as dummy1
• fibonacci: agent that calculates specific elements of the fibonacci series on

demand
• madtrans: agent that fetches information from the Madrid bus system
• outpostest: test agent for the outpost system

In addition, the second group includes the overload agent, which is a synthetic agent
designed to place a lot of stress in the processor.

Results for these tests were extracted from the logs of the Scout agent, which contain
all the information from the execution of the system.

The following additional considerations must be taken into account with regards to
the tests:

• Load balancing algorithms are scheduled to be executed 5 minutes after the last
algorithm execution. Such execution finishes after all automatic migrations
have been performed

• MIPS measurements are scheduled to be executed every 30 seconds, although
this time can only apply to the central machine, being slightly higher in the
practice. This is due to the process of outposts receiving the request messages,
measuring the MIPS of their agents and sending the information back

While testing time is 20 minutes for each test, some of the tests had to be repeated
due to errors, hence the final estimated testing period is 260 minutes (4.3 hours).
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6.4 Result analysis

In this section the results obtained from the aforementioned tests and their conclusions
are presented, indicating relevant information such as at which point migrations occur.

To this end, six figures are included, showing the performance evolution of each
agent, or set of agents, over time. This evolution is represented by the amount of
MIPS measured for the specific agent at a given sample number (i.e., each of the
measurements done every 30 seconds).

6.4.1 Normal load tests

This first group of tests consists on the execution of the common agents previously
explained in order to emulate a regular use case of a Zoe instance in which agents do
not have an excessive load.

The four tests and their results are explained next.

6.4.1.1 Equal-Free scenario

This test consists on running the system using the balanced algorithm with all agents
free and available for automatic migration.

The information found in Table 6.2 represents the calculated destinations right before
agents are migrated. In the case of migration 0, all the agents are located in the
central machine at the start of the test.
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Table 6.2: Calculated agent destinations before migrations of the normal load Equal-Free test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest

1 dummy1 dummy2 dummy3 fibonacci
madtrans
outpostest

2 dummy1 dummy2 dummy3 fibonacci
madtrans
outpostest

3 dummy1 dummy2 dummy3 fibonacci
madtrans
outpostest

Table 6.3: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in normal load Equal-Free test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.000930 0.036216 0.034872 0.000186
2 0.000843 0.031544 0.029465 0.000261
3 0.000845 0.032389 0.029772 0.000203

Table 6.2 shows the destinations calculated by the balanced algorithm as a direct result
of the values shown in Table 6.3. The dummy agents are all placed in isolation given
that they are the ones with a higher load, while the other three (fibonacci, madtrans,
outpostest) can all be placed in a single machine (outpost_arco2 ), resulting in lower
resource usage when compared to the rest of the machines.

Figure 6.2 contains the individual evolution of the MIPS measured for each of the
agents used in the test. While subfigures (d), (e) and (f) maintain their constant
tendency throughout execution (with the peaks in (e) and (f) coinciding with their
migration/data serialization process), they have a very low resource usage, which does
not affect their performance regardless of the machine they are in.

However, it is interesting to compare the evolutions shown in subfigures (a),(b) and
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(c) (dummy1, dummy2 and dummy3 ). The three agents have similar MIPS values in
the beginning, due to being present in the central machine, although they experience
a drop around sample 10.

The drop in subfigure (a) is probably due to operating system policies (in particular,
CPU scheduling), considering that it remains in the central machine throughout the
duration of the test. Furthermore, the values for subfigures (b) and (c) after that
point are lower than those in subfigure (a), which might be considered significant
when taking into account that the values represent million instructions per second.

The conclusion reached from this test is that migration does affect the performance of
the agents, although it does not have a great impact in cases where the agent does
not make an excessive use of system processing.
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Figure 6.2: MIPS evolution in Equal-Free test scenario(normal load); (a) agent "dummy1", (b) agent
"dummy2", (c) agent "dummy3", (d) agent "fibonacci", (e) agent "madtrans", (f) agent "outpostest"
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6.4.1.2 Equal-Hold scenario

This test consists on running the system using the balanced algorithm with all agents
free except for dummy2 and dummy3, which are held in central.

The information found in Table 6.4 represents the calculated destinations right before
agents are migrated. In the case of migration 0, all the agents are located in the
central machine at the start of the test.
Table 6.4: Calculated agent destinations before migrations of the normal load Equal-Hold test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest

1 dummy2 madtrans outpostest dummy1
dummy3
fibonacci

2 dummy2 madtrans outpostest dummy1
dummy3
fibonacci

3 dummy2 madtrans outpostest dummy1
dummy3
fibonacci

Table 6.5: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in normal load Equal-Hold test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.001962 0.000063 0.000060 0.036752
2 0.001809 0.000079 0.000068 0.029783
3 0.001846 0.000073 0.000073 0.029955

Table 6.4 shows the destinations calculated by the balanced algorithm as a direct result
of the values shown in Table 6.5. As opposed to the previous test, agents dummy2
and dummy3 are now forced to stay in the central machine resulting in both central
and outpost_arco2 sharing most of the load.
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Figure 6.3 contains the individual evolution of the MIPS measured for each of the
agents used in the test. Again, subfigures (d), (e) and (f) show very low values
similar to the ones presented in the previous scenario (including the migration peak
in subfigure (e)), although their calculated locations are different from the other ones,
effectively reducing the load on outpost_pi and outpost_arco1.

In this occasion, however, subfigures (b) and C show very similar values due to being
in the same machine and the difference with subfigure (a) is very close to the one
presented in the previous case as well. Furthermore, the peak difference in subfigure
(a) when migrated may be used to reiterate the previous findings.
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Figure 6.3: MIPS evolution in Equal-Hold test scenario (normal load); (a) agent "dummy1", (b) agent
"dummy2", (c) agent "dummy3", (d) agent "fibonacci", (e) agent "madtrans", (f) agent "outpostest"
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6.4.1.3 Prio-Free scenario

This test consists on running the system using the priority algorithm with all agents
free and available for automatic migration.

The information found in Table 6.6 represents the calculated destinations right before
agents are migrated. In the case of migration 0, all the agents are located in the
central machine at the start of the test.

Table 6.6: Calculated agent destinations before migrations of the normal load Prio-Free test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest

1 outpostest
dummy1
dummy2
dummy3
madtrans
fibonacci

2 outpostest
dummy1
dummy2
dummy3
madtrans
fibonacci

3 outpostest
dummy1
dummy2
dummy3
madtrans
fibonacci
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Table 6.7: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in normal load Prio-Free test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.0 0.0 0.0 0.100866
2 0.0 0.0 0.0 0.090347
3 0.0 0.0 0.0 0.089204

Table 6.6 shows the destinations calculated by the priority algorithm. Given the
priorities specified previously, the load balancing algorithm will try to migrate all
agents to either outpost_arco1 and outpost_arco2, until their hypothetical loads
exceed 80% (0.8 ), in which case it will try to fill outpost_pi and finally, central.

Considering the calculated hypothetical loads shown in Table 6.7, all agents would be
migrated to either outpost_arco1 or outpost_arco2 due to the total load reaching a
maximum of 10% (0.1 ). For this reason, agents remain in that machine throughout
the duration of the test and the other machines have a hypothetical load of 0% with
respect to the outpost agents.

Again, this change can be clearly seen in Figure 6.4. Although subfigures (d), (e) and
(f) show very little difference due to their reduced loads, the loss of performance is
more clear in subfigures (a), (b) and (d) as in the previous test scenarios.

Taking into account that this algorithm does not try to maintain balance between the
machines, it is important to note that these results are a direct consequence of the
priority assignment made beforehand which, in conclusion, would allow to shut down
the outpost_pi and outpost_arco1 machines, for instance, in order to save energy.
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Figure 6.4: MIPS evolution in Prio-Free test scenario (normal load); (a) agent "dummy1", (b) agent
"dummy2", (c) agent "dummy3", (d) agent "fibonacci", (e) agent "madtrans", (f) agent "outpostest"
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6.4.1.4 Prio-Hold scenario

This test consists on running the system using the priority algorithm with all agents
free except for dummy2 and dummy3, which are held in central.

The information found in Table 6.8 represents the calculated destinations right before
agents are migrated. In the case of migration 0, all the agents are located in the
central machine at the start of the test.
Table 6.8: Calculated agent destinations before migrations of the normal load Prio-Hold test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest

1 dummy2 dummy1
dummy3 fibonacci

madtrans
outpostest

2 dummy2 dummy1
dummy3 fibonacci

madtrans
outpostest

3 dummy2 dummy1
dummy3 fibonacci

madtrans
outpostest

Table 6.9: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in normal load Prio-Hold test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.001822 0.0 0.035142 0.0
2 0.001792 0.0 0.029116 0.0
3 0.001731 0.0 0.030092 0.0

Table 6.8 shows the destinations calculated by the priority algorithm. Given the
priorities specified previously, the load balancing algorithm will try to migrate all
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agents to either outpost_arco1 and outpost_arco2, until their hypothetical loads
exceed 80% (0.8 ), in which case it will try to fill outpost_pi and finally, central.

In this scenario, as opposed to the Prio-Free one, agents dummy2 and dummy3 are
forced to stay in the central machine. The result is that, as before, the algorithm will
migrate the rest of the agents to the other machines, in this case outpost_arco1.

Regarding the MIPS evolution shown in Figure 6.5, similar conclusions to the previous
ones can be reached: while the change is not noticeable in subfigures (d), (e) and (f),
subfigure (a) has considerable drop when compared to (b) and (c) (which are always
in central).

The main difference when compared to scenario Prio-Free is that the central machine
has a higher load due to the agents held there. Therefore, agents on hold should be
considered when choosing an algorithm to perform automatic load balancing in the
system.
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Figure 6.5: MIPS evolution in Prio-Hold test scenario (normal load); (a) agent "dummy1", (b) agent
"dummy2", (c) agent "dummy3", (d) agent "fibonacci", (e) agent "madtrans", (f) agent "outpostest"
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6.4.2 Overload tests

This second group of tests consists on the execution of the common agents previously
explained in addition to the overload agent, whose only task is to waste CPU resources,
allowing to see how the algorithms behave in such scenario.

The four tests and their results are explained next.

6.4.2.1 Equal-Free scenario

This test consists on running the system using the balanced algorithm with all agents
free and available for automatic migration.

The information found in Table 6.10 represents the calculated destinations right
before agents are migrated. In the case of migration 0, all the agents are located
in the central machine at the start of the test.

Table 6.10: Calculated agent destinations before migrations of the overload Equal-Free test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest
overload

1 madtrans dummy1 dummy2 dummy3
overload fibonacci

outpostest
2 dummy2 dummy1 overload dummy3

madtrans fibonacci
outpostest

3 madtrans dummy1 dummy2 dummy3
overload fibonacci

outpostest
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Table 6.11: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in overload Equal-Free test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.927513 0.037168 0.034754 0.035306
2 0.000790 0.032485 35.178499 0.029781
3 0.045677 0.032208 0.032345 0.045677

Table 6.10 shows the destinations calculated by the balanced algorithm as a direct
result of the values shown in Table 6.11. The newly introduced overload agent greatly
affects the results when compared to the same scenario in the normal load test group.

At first glance, the previous table shows a value of 35.178499 (over 1) for the load of
outpost_arco1. While this would seem impossible, the implementation of the algorithm
(see Equal balance algorithm) must be considered before reaching that conclusion. In
practice, the hypothetical loads that are used to determine the new locations are
calculated with the MIPS of the agents in their current location. Therefore, the
load value is not real and would be much lower after migration.

In Figure 6.6, the subfigures for agents fibonacci and outpostest have been merged
into subfigure (d), considering that their loads were almost identical and both of them
were placed in the same machine during execution. While most of the plots show
similar values to those analyzed in the previous test scenarios, subfigure (f) shows
very interesting results. The overload agent reaches its peak in MIPS when located in
the central machine, suffering a great performance loss when migrated.

In addition, through the values of the tables it is possible to conclude that the algorithm
will probably continue migrating overload between central and outpost_arco1 due to
the excessive resource usage done by the agent during its execution.
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Figure 6.6: MIPS evolution in Equal-Free test scenario (overload); (a) agent "dummy1", (b) agent "dummy2",
(c) agent "dummy3", (d) agents "fibonacci" and "outpostest", (e) agent "madtrans", (f) agent "overload"
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6.4.2.2 Equal-Hold scenario

This test consists on running the system using the balanced algorithm with all agents
free except for dummy2 and dummy3, which are held in central.

The information found in Table 6.12 represents the calculated destinations right
before agents are migrated. In the case of migration 0, all the agents are located
in the central machine at the start of the test.

Table 6.12: Calculated agent destinations before migrations of the overload Equal-Hold test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest
overload

1 dummy2 fibonacci madtrans dummy1
dummy3 overload outpostest

2 dummy2 fibonacci madtrans dummy1
dummy3 overload outpostest

3 dummy2
dummy3

fibonacci dummy1
madtrans

outpostest
overload

Table 6.13: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in overload Equal-Hold test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.001907 0.000063 33.843381 0.036377
2 0.001820 0.000071 1.642751 0.030078
3 0.001775 0.000082 0.030128 1.640552

Table 6.12 shows the destinations calculated by the balanced algorithm as a direct
result of the values shown in Table 6.13. Due to agents dummy2 and dummy3 being
on hold in the central machine, the algorithm migrates the overload agent to the
outposts, greatly affecting its performance after the first migration.

A case of high load (33.843381 over 1) is found in a similar way to the Equal-Free
scenario. However, the hypothetical loads for outpost_arco1 and outpost_arco2 exceed
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1 in second and third migrations respectively. This is likely due to the loads being
calculated by considering the total MIPS a machine is capable of through benchmarking,
given that the benchmark results were the average values of 5 executions.

Regarding Figure 6.7, plots of agents dummy2 and dummy3 have been merged into
subfigure (b) due to their similarity and location. Furthermore, and following the
analysis of the previous tables, subfigure (f) shows the performance drop of the
overload agent after the first migration, even though it maintains a regular load in
both outposts.
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Figure 6.7: MIPS evolution in Equal-Hold test scenario (overload); (a) agent "dummy1", (b) agents "dummy2"
and "dummy3", (c) agent "fibonacci", (d) agents "madtrans", (e) agent "outpostest", (f) agent "overload"
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6.4.2.3 Prio-Free scenario

This test consists on running the system using the priority algorithm with all agents
free and available for automatic migration.

The information found in Table 6.14 represents the calculated destinations right
before agents are migrated. In the case of migration 0, all the agents are located
in the central machine at the start of the test.

Table 6.14: Calculated agent destinations before migrations of the overload Prio-Free test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest
overload

1 overload dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest

2 overload dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest

3 overload dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest
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Table 6.15: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in overload Prio-Free test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.9333203 0.0 0.0 0.105181
2 0.932935 0.0 0.0 0.089295
3 0.956055 0.0 0.0 0.090598

Table 6.14 shows the destinations calculated by the priority algorithm as a direct
result of the values shown in Table 6.15. The first thing to note is that the overload
agent remains always in the central machine. This behaviour is to be expected,
considering that the algorithm determined the agent would have exceeded the 80%
threshold parameter included in the algorithm (see Priority algorithm).

Therefore, while the rest of the agents are placed in outpost_arco2 in a similar way to
the normal load Prio-Free scenario, the overload agent is forced to stay in central,
which is the default when all the machines exceed said threshold.

Plots for agents dummy2 and dummy3 have been merged, once again due to their
similarity, into subfigure (b) of Figure 6.8. Overall, the plots show the results in line
with the previously analyzed scenarios (e.g., dummy agents have a performance drop
after migrated), with the overload agent maintaining a high load due to being located
in the central machine.
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Figure 6.8: MIPS evolution in Prio-Free test scenario (overload); (a) agent "dummy1", (b) agents "dummy2"
and "dummy3", (c) agent "fibonacci", (d) agents "madtrans",(e) agent "outpostest", (f) agent "overload"
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6.4.2.4 Prio-Hold scenario

This test consists on running the system using the priority algorithm with all agents
free except for dummy2 and dummy3, which are held in central.

The information found in Table 6.16 represents the calculated destinations right
before agents are migrated. In the case of migration 0, all the agents are located
in the central machine at the start of the test.

Table 6.16: Calculated agent destinations before migrations of the overload Prio-Hold test scenario

Migration central outpost_pi oupost_arco1 outpost_arco2

0 dummy1
dummy2
dummy3
fibonacci
madtrans
outpostest
overload

1 dummy2 dummy1
dummy3 fibonacci
overload madtrans

outpostest
2 dummy2 dummy1

dummy3 fibonacci
overload madtrans

outpostest
3 dummy2 dummy1

dummy3 fibonacci
overload madtrans

outpostest

Table 6.17: Calculated hypothetical machine loads (percentages over 1) used for determining new agent
destinations in overload Prio-Hold test scenario

Migration central outpost_pi outpost_arco1 outpost_arco2

1 0.925975 0.0 0.0 0.036034
2 0.919349 0.0 0.0 0.030091
3 0.929200 0.0 0.0 0.029579

Table 6.14 shows the destinations calculated by the priority algorithm as a direct result
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of the values shown in Table 6.15. As in the previous scenario, overload surpasses
the 80% threshold in all the outposts with higher priority, and is moved to central
machine.

Similar to previous cases, in Figure 6.9, dummy2 and dummy3 (subfigure (b)) show a
constant high load while dummy1 loses some MIPS due to the migration. In addition,
as before, the overload agent maintains a regular load due to being always in central.

As a conclusion, the priority algorithm has shown to be efficient for centralizing the
load in as little machines as possible, which would allow to use outposts for other
tasks or simply shut them down.
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Figure 6.9: MIPS evolution in Prio-Hold test scenario (overload); (a) agent "dummy1", (b) agents "dummy2"
and "dummy3", (c) agent "fibonacci", (d) agents "madtrans", (e) agent "outpostest", (f) agent "overload"

100



Chapter 7

Conclusions and future work

This chapter contains the conclusions reached after development of the project and
the analysis of the solution, in addition to proposed further work in order to expand
what has been implemented and discussed in this document.

7.1 Conclusions

The Introduction of this document listed the set of objectives that were aimed to be
solved through the presented solution. These are analyzed below.

The main objective of this project was to design an architecture to support
agent migration by extending the original Zoe project. This was achieved by taking
advantage of the functionalities and mechanisms available in the Zoe architecture,
which resulted in a pluggable system that is completely compatible (both backward
and forward) with the original system.

This software based solution is possible due to the design of a portable and efficient
communication protocol, which was another objective of this work. Achieving a
generic an easy to implement solution is a complicated ask. While the alternatives
initially considered were very powerful and would have solved the problem at hand (in
particular, live migration of agents) directly, they would have required modifications
to the original Zoe architecture or specific hardware support.

Instead of that, this proposal leverages mechanisms available in most, if not all, pro-
gramming languages, such as plaintext handling or data (de)serialization, effectively
making it appropriate for its use in any programming language and hardware archi-
tecture supported by those languages. The result obtained is a transparent system
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were agent developers do not need to worry about how the outpost or the Scout agent
work, greatly reducing the complexity for them, and with a detailed specification for
creating migration-enabled agents.

Even though such approach works well with Zoe agents considering their usual load,
there are also limitations to what can be done. The most notable limitation is the
fact that real live migration, such as the one offered by containers or virtual machines,
cannot be achieved and there is bound to be downtime in the service offered by the
agent.

In addition to migration capabilities, another requirement was to design load bal-
ancing algorithms for an efficient hardware resource management. To this
end, the equal-balance and priority algorithms were implemented, although it is clear
that they may not be fit for every use case. Therefore, algorithm implementations
were decoupled from the main Scout agent routines.

With this decoupling, developers are encouraged to extend the system with their
own algorithms, which was designed to be rather simple: algorithms receive current
information on agents and outposts and must simply return the new location of each
agent. This type of implementation gives freedom to developers, as long as they use
the specified format for the output of their algorithms, without needing to know how
the Scout agent works internally.

Finally, the last objective was to implement and evaluate the system in an
heterogeneous architecture. As shown in the Evaluation chapter of this document,
this was achieved by performing tests on machines with different hardware architectures
and operating systems, in particular Debian/Raspbian for x64 and armhf systems.

The Result analysis performed showed that the system worked correctly in the setup
used. While there were evident decreases in performance when agents were migrated
to a Raspberry Pi computer, especially in the overload test scenarios, these were
as expected considering the difference in the computational power of each machine.
Nonetheless, every agent continued to work as expected, proving that the system can
indeed be implemented in heterogeneous environments.

All in all the implemented solution, which is formed by over 3000 lines of code among
all the components of the system, solves the problem considered at the beginning
of this document and has allowed the student to experience first hand the process
of design and implementation of a complex system by taking advantage of existing
protocols and tools (such as SSH tunneling for inter-machine communication) and to
apply knowledge gained throughout the years at the University.
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7.2 Future work

As with every project, the proposed solution also has room for improvement. While
the core functionalities and features have been implemented, there are some parts
that could be enhanced or would be interesting to add to the system. The following
lines express some ideas of future work for this project.

First and foremost, the protocol would need to be ported to other programming
languages. Considering that it was designed to be as generic as possible, it would be
possible to include the required integration in the standard library after new languages
are added to the Zoe platform.

Moreover, it would be very beneficial to have a better integration with other core Zoe
agents, in particular with the Zoe agent manager. Taking into account that the
agent manager is the one in charge of all tasks regarding administration of agents
(e.g. installation, removal, update, etc.), information exchange between the manager
and the Scout could be used for cases such as trying to update an agent located in a
remote machine.

Lastly, new load balancing algorithms could be implemented and existing ones
improved. This would include energy saving policies and linear programming algo-
rithms for the load balancing process. These new implementations would of course
need to be tested, which might provide interesting results, depending on the case
scenario, that might be applied to other projects.
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Chapter 8

Glossary

8.1 Acronyms

Acronym Meaning

GUL Grupo de Usuarios de Linux (Linux User Group)
PDA Personal Digital Assistant
IPA Intelligent Personal Assistant
API Application Programming Interface
IRC Internet Relay Chat
SaaS Software as a Service
RPC Remote Procedure Call
REST Representational State Transfer
SSL Secure Socket Layer
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
GNU GNU is Not UNIX
NFS Network File System
KVM Kernel-based Virtual Machine
LXC Linux Containers
RMI Remote Method Invocation
MIPS Million Instructions Per Second
PID Process ID
GTK GIMP ToolKit
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Appendix A

Installation manual

This section covers the installation and key configuration aspects of the Zoe virtual
assistant and the Outpost addition (the work explained in this document).

A.1 Preparation

Installation steps shown here are performed in two different hardware/software config-
urations:

• Debian GNU/Linux testing (stretch) on an i7 2670QM @ 2.2GHz: main server
• Raspbian on Raspberry Pi: outpost

Both platforms have common software requirements and can be installed with the
following command (supposing superuser access is enabled):

# apt-get install git perl openjdk-8-jre python3 python3-pip

This command installs git, Perl 5, Java 1.8, Python 3 and pip respectively.

Regarding the code of the outpost project, the following directory structure is supposed
(inside a compressed file):

agents/ -- directory containing agents code (scout and outpostest)
cmdproc/ -- natural language commands for communication channels
mailproc/ -- natural language commands for email
lib/ -- outpost library code
outpost/ -- outpost server code
dashboard/ -- visualization GUI code
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Note that the outpost system expects public key authentication when opening the
SSH tunnels. This is done by enabling the PubkeyAuthentication option in the SSH
daemon configuration file (in Debian /etc/sshd/sshd_config) and appending the
public key from the user to ~/.ssh/authorized_keys.

As it is out of the scope of this work, generation of secure key-pairs will not be covered.

A.1.1 Server installation

The code for the Zoe startup kit is publicly available at https://github.com/voiser/
zoe-startup-kit and can be downloaded using git. For the sake of simplicity, code
will be downloaded to /home/zoe for fast access. This directory is created with the
command:

# mkdir /home/zoe
# chown -R USER:USER /home/zoe

Git will download all the code, and past revisions, from the remote repos-
itory. By default it works with the latest code in a branch called master.
However, and given that the project is currently being developed, this docu-
ment will work with the latest code committed at the time of writing (with id
340ef02483ceb0642e78f97d928f91717751ca62 ). In order to do this:

$ git clone https://github.com/voiser/zoe-startup-kit.git /home/zoe
$ cd /home/zoe
$ git checkout -b outpost 340ef02483ceb0642e78f97d928f91717751ca62

The previous commands make sure the working code is the one the tests were performed
in. To enable outpost capabilities, the following actions have to be performed (suppose
SRC directory is the base directory that contains the outpost source):

$ cp -r SRC/agents/* /home/zoe/agents/
$ cp -r SRC/lib/* /home/zoe/lib/
$ cp SRC/cmdproc/* /home/zoe/cmdproc/
$ cp SRC/mailproc/* /home/zoe/mailproc/

$ mkdir -p /home/zoe/etc/scout/rules
$ touch /home/zoe/etc/scout/scout.conf
$ touch /home/zoe/etc/scout/outpost.list

In addition to copying the outpost-related files, an additional command creates the
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directory structure used to store both scout configurations (/home/zoe/etc/scout)
and outpost agents rules (/home/zoe/etc/scout/rules/).

While not necessary, it is recommended to explicitly identify the scout agent in the
Zoe configuration file (/home/zoe/etc/zoe.conf) by adding the following lines:

[agent scout]
port = <PORT_NUMBER>

Where <PORT_NUMBER> could have a value such as 30008. This way, the server knows
how to address the scout.

Furthermore, it is necessary to install the Linux perf tool for accessing hardware
counters and autossh for the tunneling. Usually this can be performed with the
command:

# apt-get install linux-perf autossh

If the linux-perf package is not available, static builds of the perf binary would also
work in this case.

Finally, the scout agent needs some additional Python modules for its operations, the
pip3 tool can install these to the lib directory of the agent without needing superuser
permissions:

$ pip3 install -t /home/zoe/agents/scout/lib paramiko scp peewee

A.1.2 Outpost installation

Supposing the outpost machine has the same /home/zoe directory with the commit
specified in the previous section, installation has minor differences compared to the
one for the main server. File copy is as follows:

$ cp -r SRC/lib/* /home/zoe/lib
$ cp -r SRC/outpost/* /home/zoe/

$ rm -rf /home/zoe/zoe /home/zoe/server
$ rm -rf /home/zoe/agents/*
$ rm -rf /home/zoe/disabled-agents/*
$ rm /home/zoe/etc/zoe.conf && touch /home/zoe/etc/zoe.conf

$ mkdir -p /home/etc/outpost && touch /home/zoe/etc/outpost/outpost.conf
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As the linux-perf package was not available for Linux kernel 4.1 (stable version of
Raspbian at the time of writing), a static build downloaded from the Internet was
used in its place.

A.2 Configuration

This section covers the main configuration aspects of the outpost system. Details
specific to Zoe are available online1.

By default, both server and outpost will listen to address localhost:30000 as defined
in etc/environment.sh.

A.2.1 Server configuration files

There are two important files that configure how the outpost system works. The first
one is located in /home/zoe/etc/scout/scout.conf and contains information for
both the scout itself and the machine it is running on. Its structure is as follows:

[general]
perf_path = /usr/bin/perf
balance = none
priority = 2
mips = 5217.933559389

[agents]
free = madtrans outpostest fibonacci dummy1 dummy2
hold =

Regarding the general section:

• perf_path: specifies the path to the Linux perf utility
• balance: specifies the balance algorithm to use (equal or prio), disable with

none
• priority: specifies the priority of the machine in the prio balance algorithm,

higher numerical value equals lower priority
• mips: Million Instructions Per Second the machine is capable of as measured

with the Linpack benchmark
1http://zoe.readthedocs.io/en/latest/index.html
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Regarding the agents section:

• free: list of agents that can be migrated automatically when balancing
• hold: list of agents that cannot be migrated automatically when balancing but

can be migrated manually

By default, new agents are added to the free list by the scout.

The second configuration file specifies connection settings and additional details for
the remote machines/outposts. It is located in /home/zoe/etc/scout/outpost.list
and has the following structure:

[outpost outpost_pi]
host = 192.168.1.111
remote_port = 30000
local_tunnel = 29999
remote_tunnel = 29999
directory = /home/zoe_outpost
priority = 1
mips = 132.287849904

Each section must start with outpost followed by the unique name given to the outpost,
with the following settings:

• host: IP or hostname used to connect to the outpost
• username: optional, username to be used in connection, defaults to current local

user
• remote_port: port number the remote sever is listening at (in the Raspberry

Pi)
• local_tunnel: local port number used to establish the SSH tunnel connection
• remote_tunnel: remote port number used to establish the SSH tunnel connection

(in the Raspberry Pi)
• directory: base directory of the outpost in the remote machine
• priority: specifies the priority of the machine in the prio balance algorithm,

higher numerical value equals lower priority
• mips: Million Instructions Per Second the machine is capable of as measured

with the Linpack benchmark
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A.2.2 Outpost configuration files

As opposed to the scout configuration, the outpost is easier to configure. There is
only one configuration file located in /home/zoe/etc/outpost/outpost.conf which
has the following structure:

[central]
host = localhost
port = 29999
tunnel = 29999

[outpost]
id = outpost_pi
perf_path = /home/zoe_outpost/perf

As the outpost does not have to worry about additional details, it contains only a
section with information on the central server:

• host: host in which the server is running, as the outpost works with SSH
tunneling, this is usually localhost

• port: port number from which the central server can be accessed (tunnel port)
• tunnel: port number of the tunnel to which the outpost is connected (in the

central machine)

And a section with information on the outpost:

• id: unique ID (same as configured in outpost.list in central) used to work
with messages directed to the outpost itself

• perf_path: path to the Linux perf tool for measuring performance

110



Appendix B

User manual

This section covers the usage of the outpost system for Zoe administrators, in particular
the commands used to communicate with the Scout and the dashboard, which can be
used as a secondary way to visualize simple data obtained from the Scout.

B.1 Commands

Scout commands were designed to resemble a classic command line interface, with the
difference that they are executed through a messaging service. The implementation,
for instance, was tested using Telegram, Jabber and email messaging, although any
communication channel available to Zoe should be able to work with the commands.
Figure B.1 shows an example of the Telegram interface by executing the locations
command.

While regular Zoe commands employ natural language recognition, such feature could
be potentially dangerous for critical commands like the ones implemented for the
Scout. Instead, the exact matching implemented by David Muñoz is used [35] to
provide the functionality.

It should be noted that email commands are slightly different to the other channels
(Telegram, Jabber, etc.). In order to recognize an incoming mail as a scout message,
the subject of the mail should be scout, and the command should appear in a single
line of the body.

In the following sections, all the commands available will be explained in detail.
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Figure B.1: Example command through Telegram

help

This command displays a list of available commands to the user. It can be executed
by sending the following message to Zoe:

scout help

backup

The backup command may be used to regenerate the backup directory of an agent
(see File migration). It can only be executed when the agent in question is present in
the central server and will discard an already existing backup directory.

Note that the backup is already recreated automatically when an agent is migrated
from central, therefore this command is only implemented to be used in special cases.

The syntax for the command is as follows:

scout backup <agent>

Where <agent> is the name of the agent to back up (for instance, madtrans).
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close-tunnel

Closes a SSH tunnel to the specified outpost (see SSH tunneling). The tunnel should
be opened for this command to work (the Scout will check automatically).

The syntax for the command is as follows:

scout close-tunnel <outpost>

Where <outpost> is the name of the outpost for which the tunnel is being closed (for
instance, outpost_pi).

hold

This command flags an agent as held in place so that it cannot be migrated by the
load balancing algorithm (see Holding an agent). The agent should not be already on
hold, although the Scout will check automatically.

The syntax for the command is as follows:

scout hold <agent>

Where <agent> is the name of the agent to hold (for instance, madtrans).

launch-outpost

Starts (or restarts) an outpost server and all the agents located in that outpost.
Note that the behaviour of this command is to restart everything given that the Scout
does not know the actual state of the server (see Launching an outpost).

The syntax for the command is as follows:

scout launch-outpost <outpost>

Where <outpost> is the name of the outpost to launch (for instance, outpost_pi).

locations

Returns a table-like list of the available outposts and the agents that are present in
each of them. The presented information is based on the last known location of an
agent as stored in the internal database.

The syntax for the command is as follows:

scout locations
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migrate

Used to manually migrate an agent to a specific outpost. This triggers Data migration
and File migration processes and informs the user when the migration has been
completed.

In addition, the user will be notified in case an error in the migration.

The syntax for the command is as follows:

scout migrate <agent> <outpost>

Where <agent> is the name of the agent to migrate (for instance,madtrans) and
<outpost> is the name of the new destination (for instance, outpost_pi).

open-tunnel

Opens a SSH tunnel to the specified outpost (see SSH tunneling). The tunnel should
be closed for this command to work (the Scout will check automatically).

The syntax for the command is as follows:

scout open-tunnel <outpost>

Where <outpost> is the name of the outpost for which the tunnel is being opened
(for instance, outpost_pi).

retrieve-info

Forces stored agent information retrieval (see Data migration). This command is
executed automatically and should only be used in special cases.

The syntax for the command is as follows:

scout retrieve-info <agent>

Where <agent> is the name of the agent for which to retrieve information (for instance,
madtrans).

retrieve-msg

Forces stored agent message retrieval (see Message relaying). This command is
executed automatically and should only be used in special cases.

The syntax for the command is as follows:

scout retrieve-msg <agent>
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Where <agent> is the name of the agent for which to retrieve messages (for instance,
madtrans).

status

This command offers two different variants: it can either obtain status information for
agents or for outposts.

The agent mode is executed using the syntax:

scout status agents

And returns the following information:

• Whether the agent is on hold or not
• Its current location
• Current MIPS of the agent
• Timestamp of the last update of the information

The outpost mode is executed using the syntax:

scout status outposts

And returns the following information:

• Whether the outpost is running or not
• Host address
• Ports used for server and tunnel
• Remote outpost directory path
• MIPS the machine is capable of
• Priority of the outpost for prio load balancing algorithm
• Timestamp of the last update of the information

Furthermore, the outpost mode also returns MIPS, priority and timestamp of the
central machine in addition to the current balancing algorithm in use.

stop-outpost

Stops an outpost server and all the agents located in that outpost.

The syntax for the command is as follows:

scout stop-outpost <outpost>

Where <outpost> is the name of the outpost to stop (for instance, outpost_pi).
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unhold

This command flags an agent as free so that it can be migrated by the load balancing
algorithm (see Freeing an agent). The agent should not be already free, although the
Scout will check automatically.

The syntax for the command is as follows:

scout unhold <agent>

Where <agent> is the name of the agent to unhold (for instance, madtrans).

B.2 Dashboard

In order to use the dashboard, Python bindings for GTK and additional Python
modules must be installed in the system.

In Debian systems, the bindings can be installed with the following command:

# apt-get install python3-gi

While the additional modules can be installed with:

$ pip3 install blinker paramiko scp peewee

B.2.1 Configuration

The dashboard must be configured to obtain the information from a Zoe installation.
Two different operation modes are considered: local and remote.

In local mode, the data is obtained from the same machine. It requires the following
parameter:

• Path to the root of the Zoe instance

In remote mode, data is obtained from a remote machine through SSH and relevant
files are copied to the machine where the dashboard is being executed. It requires the
following parameters:

• Host address of the remote machine
• Path to the root of the remote Zoe instance
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B.2.2 Usage

Once configured, the dashboard periodically fetches the data from the Zoe instance
and works with a copy to display the information in order to prevent affecting the
original one used by the Scout.

Figure B.2 shows the Outposts view, which offers a simple visualization of where
each agent is located. In the image, all the agents are currently running in the central
server, and the list can be scrolled vertically and horizontally as needed.

Figure B.2: Dashboard Outposts view

The Resources view shows a small table with the ID of the outpost the agent is
currently in, its latest MIPS and the timestamp of the last update. In the future, this
view could be expanded to include other resources that may be taken into account in
the system.
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Figure B.3: Dashboard Resources view
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